tengri/output/src/ops/transform.rs

231 lines
10 KiB
Rust

//! [Content] items that modify the inherent
//! dimensions of their inner [Render]ables.
//!
//! Transform may also react to the [Area] provided.
//! ```
//! use ::tengri::{output::*, tui::*};
//! let area: [u16;4] = [10, 10, 20, 20];
//! fn test (area: [u16;4], item: &impl Content<TuiOut>, expected: [u16;4]) {
//! assert_eq!(Content::layout(item, area), expected);
//! assert_eq!(Render::layout(item, area), expected);
//! };
//! test(area, &(), [20, 20, 0, 0]);
//!
//! test(area, &Fill::xy(()), area);
//! test(area, &Fill::x(()), [10, 20, 20, 0]);
//! test(area, &Fill::y(()), [20, 10, 0, 20]);
//!
//! //FIXME:test(area, &Fixed::x(4, ()), [18, 20, 4, 0]);
//! //FIXME:test(area, &Fixed::y(4, ()), [20, 18, 0, 4]);
//! //FIXME:test(area, &Fixed::xy(4, 4, unit), [18, 18, 4, 4]);
//! ```
use crate::*;
/// Defines an enum that transforms its content
/// along either the X axis, the Y axis, or both.
macro_rules! transform_xy {
($x:literal $y:literal $xy:literal |$self:ident : $Enum:ident, $to:ident|$area:expr) => {
pub enum $Enum<T> { X(T), Y(T), XY(T) }
impl<T> $Enum<T> {
#[inline] pub const fn x (item: T) -> Self { Self::X(item) }
#[inline] pub const fn y (item: T) -> Self { Self::Y(item) }
#[inline] pub const fn xy (item: T) -> Self { Self::XY(item) }
}
#[cfg(feature = "dsl")]
impl<'a, E: Output + 'a, T: ViewContext<'a, E>> TryFromAtom<'a, T>
for $Enum<RenderBox<'a, E>> {
fn try_from_expr (state: &'a T, iter: TokenIter<'a>) -> Option<Self> {
let mut iter = iter.clone();
if let Some(Token { value: Value::Key(k), .. }) = iter.peek() {
if k == $x || k == $y || k == $xy {
let _ = iter.next().unwrap();
let token = iter.next().expect("no content specified");
let content = get_content!(state => token);;
return Some(match k {
$x => Self::x(content),
$y => Self::y(content),
$xy => Self::xy(content),
_ => unreachable!()
})
}
}
None
}
}
impl<E: Output, T: Content<E>> Content<E> for $Enum<T> {
fn content (&self) -> impl Render<E> {
match self {
Self::X(item) => item,
Self::Y(item) => item,
Self::XY(item) => item,
}
}
fn layout (&$self, $to: <E as Output>::Area) -> <E as Output>::Area {
use $Enum::*;
$area
}
}
}
}
/// Defines an enum that parametrically transforms its content
/// along either the X axis, the Y axis, or both.
macro_rules! transform_xy_unit {
($x:literal $y:literal $xy:literal |$self:ident : $Enum:ident, $to:ident|$layout:expr) => {
pub enum $Enum<U, T> { X(U, T), Y(U, T), XY(U, U, T), }
impl<U, T> $Enum<U, T> {
#[inline] pub const fn x (x: U, item: T) -> Self { Self::X(x, item) }
#[inline] pub const fn y (y: U, item: T) -> Self { Self::Y(y, item) }
#[inline] pub const fn xy (x: U, y: U, item: T) -> Self { Self::XY(x, y, item) }
}
#[cfg(feature = "dsl")]
impl<'a, E: Output + 'a, T: ViewContext<'a, E>> TryFromAtom<'a, T>
for $Enum<E::Unit, RenderBox<'a, E>> {
fn try_from_expr (state: &'a T, iter: TokenIter<'a>) -> Option<Self> {
let mut iter = iter.clone();
if let Some(Token { value: Value::Key(k), .. }) = iter.peek() {
if k == $x || k == $y {
let _ = iter.next().unwrap();
let u = iter.next().expect("no unit specified");
let u = get_value!(state => u);
let c = iter.next().expect("no content specified");
let c = get_content!(state => c);
return Some(match k {
$x => Self::x(u, c),
$y => Self::y(u, c),
_ => unreachable!(),
})
} else if k == $xy {
let _ = iter.next().unwrap();
let u = get_value!(state => iter.next().expect("no unit specified"));
let v = get_value!(state => iter.next().expect("no unit specified"));
let c = get_content!(state => iter.next().expect("no content specified"));
return Some(Self::xy(u, v, c))
}
}
None
}
}
impl<E: Output, T: Content<E>> Content<E> for $Enum<E::Unit, T> {
fn content (&self) -> impl Render<E> {
Some(match self {
Self::X(_, content) => content,
Self::Y(_, content) => content,
Self::XY(_, _, content) => content,
})
}
fn layout (&$self, $to: E::Area) -> E::Area {
$layout.into()
}
}
impl<U: Copy + Coordinate, T> $Enum<U, T> {
#[inline] pub fn dx (&self) -> U {
match self {
Self::X(x, _) => *x, Self::Y(_, _) => 0.into(), Self::XY(x, _, _) => *x,
}
}
#[inline] pub fn dy (&self) -> U {
match self {
Self::X(_, _) => 0.into(), Self::Y(y, _) => *y, Self::XY(_, y, _) => *y,
}
}
}
}
}
transform_xy!("fill/x" "fill/y" "fill/xy" |self: Fill, to|{
let [x0, y0, wmax, hmax] = to.xywh();
let [x, y, w, h] = self.content().layout(to).xywh();
match self {
X(_) => [x0, y, wmax, h],
Y(_) => [x, y0, w, hmax],
XY(_) => [x0, y0, wmax, hmax],
}.into() });
transform_xy_unit!("fixed/x" "fixed/y" "fixed/xy"|self: Fixed, area|{
let [x, y, w, h] = area.xywh();
let fixed_area = match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
};
let [x, y, w, h] = Render::layout(&self.content(), fixed_area.into()).xywh();
let fixed_area = match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
};
fixed_area });
transform_xy_unit!("min/x" "min/y" "min/xy"|self: Min, area|{
let area = Render::layout(&self.content(), area);
match self {
Self::X(mw, _) => [area.x(), area.y(), area.w().max(*mw), area.h()],
Self::Y(mh, _) => [area.x(), area.y(), area.w(), area.h().max(*mh)],
Self::XY(mw, mh, _) => [area.x(), area.y(), area.w().max(*mw), area.h().max(*mh)],
}});
transform_xy_unit!("max/x" "max/y" "max/xy"|self: Max, area|{
let [x, y, w, h] = area.xywh();
Render::layout(&self.content(), match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
}.into())});
transform_xy_unit!("shrink/x" "shrink/y" "shrink/xy"|self: Shrink, area|Render::layout(
&self.content(),
[area.x(), area.y(), area.w().minus(self.dx()), area.h().minus(self.dy())].into()));
transform_xy_unit!("expand/x" "expand/y" "expand/xy"|self: Expand, area|Render::layout(
&self.content(),
[area.x(), area.y(), area.w().plus(self.dx()), area.h().plus(self.dy())].into()));
transform_xy_unit!("push/x" "push/y" "push/xy"|self: Push, area|{
let area = Render::layout(&self.content(), area);
[area.x().plus(self.dx()), area.y().plus(self.dy()), area.w(), area.h()] });
transform_xy_unit!("pull/x" "pull/y" "pull/xy"|self: Pull, area|{
let area = Render::layout(&self.content(), area);
[area.x().minus(self.dx()), area.y().minus(self.dy()), area.w(), area.h()] });
transform_xy_unit!("margin/x" "margin/y" "margin/xy"|self: Margin, area|{
let area = Render::layout(&self.content(), area);
let dx = self.dx();
let dy = self.dy();
[area.x().minus(dx), area.y().minus(dy), area.w().plus(dy.plus(dy)), area.h().plus(dy.plus(dy))] });
transform_xy_unit!("padding/x" "padding/y" "padding/xy"|self: Padding, area|{
let area = Render::layout(&self.content(), area);
let dx = self.dx();
let dy = self.dy();
[area.x().plus(dx), area.y().plus(dy), area.w().minus(dy.plus(dy)), area.h().minus(dy.plus(dy)), ] });
#[cfg(test)] mod test_op_transform {
use super::*;
use proptest::prelude::*;
use proptest::option::of;
macro_rules! test_op_transform {
($fn:ident, $Op:ident) => {
proptest! {
#[test] fn $fn (
op_x in of(u16::MIN..u16::MAX),
op_y in of(u16::MIN..u16::MAX),
content in "\\PC*",
x in u16::MIN..u16::MAX,
y in u16::MIN..u16::MAX,
w in u16::MIN..u16::MAX,
h in u16::MIN..u16::MAX,
) {
if let Some(op) = match (op_x, op_y) {
(Some(x), Some(y)) => Some($Op::xy(x, y, content)),
(Some(x), None) => Some($Op::x(x, content)),
(Some(y), None) => Some($Op::y(y, content)),
_ => None
} {
assert_eq!(Content::layout(&op, [x, y, w, h]),
Render::layout(&op, [x, y, w, h]));
}
}
}
}
}
test_op_transform!(test_op_fixed, Fixed);
test_op_transform!(test_op_min, Min);
test_op_transform!(test_op_max, Max);
test_op_transform!(test_op_push, Push);
test_op_transform!(test_op_pull, Pull);
test_op_transform!(test_op_shrink, Shrink);
test_op_transform!(test_op_expand, Expand);
test_op_transform!(test_op_margin, Margin);
test_op_transform!(test_op_padding, Padding);
}