wip: ast/cst
Some checks are pending
/ build (push) Waiting to run

This commit is contained in:
🪞👃🪞 2025-05-25 22:48:29 +03:00
parent 31e84bf5b3
commit f1b24d436a
20 changed files with 1081 additions and 1103 deletions

70
dsl/src/dsl_ast.rs Normal file
View file

@ -0,0 +1,70 @@
use crate::*;
use std::sync::Arc;
use std::fmt::{Debug, Display, Formatter};
/// Emits tokens.
pub trait Ast: Debug {
fn peek (&self) -> Option<AstValue>;
fn next (&mut self) -> Option<AstValue>;
fn rest (self) -> Option<Box<dyn Ast>>;
}
/// A [Cst] can be used as an [Ast].
impl<'source: 'static> Ast for Cst<'source> {
fn peek (&self) -> Option<AstValue> {
Cst::peek(self).map(|token|token.value.into())
}
fn next (&mut self) -> Option<AstValue> {
Iterator::next(self).map(|token|token.value.into())
}
fn rest (self) -> Option<Box<dyn Ast>> {
self.peek().is_some().then(||Box::new(self) as Box<dyn Ast>)
}
}
#[derive(Clone, Default, Debug)]
pub enum AstValue {
#[default] Nil,
Err(DslError),
Num(usize),
Sym(Arc<str>),
Key(Arc<str>),
Str(Arc<str>),
Exp(Arc<Box<dyn Ast>>),
}
impl std::fmt::Display for AstValue {
fn fmt (&self, out: &mut Formatter) -> Result<(), std::fmt::Error> {
use AstValue::*;
write!(out, "{}", match self {
Nil => String::new(),
Err(e) => format!("[error: {e}]"),
Num(n) => format!("{n}"),
Sym(s) => format!("{s}"),
Key(s) => format!("{s}"),
Str(s) => format!("{s}"),
Exp(e) => format!("{e:?}"),
})
}
}
impl<'source: 'static> From<CstValue<'source>> for AstValue {
fn from (other: CstValue<'source>) -> Self {
use CstValue::*;
match other {
Nil => Self::Nil,
Err(e) => Self::Err(e),
Num(u) => Self::Num(u),
Sym(s) => Self::Sym(s.into()),
Key(s) => Self::Key(s.into()),
Str(s) => Self::Str(s.into()),
Exp(_, s) => Self::Exp(Arc::new(s.into())),
}
}
}
impl<'source: 'static> Into<Box<dyn Ast>> for Cst<'source> {
fn into (self) -> Box<dyn Ast> {
Box::new(self)
}
}

291
dsl/src/dsl_cst.rs Normal file
View file

@ -0,0 +1,291 @@
use crate::*;
/// Provides a native [Iterator] API over [CstConstIter],
/// emitting [CstToken] items.
///
/// [Cst::next] returns just the [CstToken] and mutates `self`,
/// instead of returning an updated version of the struct as [CstConstIter::next] does.
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct Cst<'a>(pub CstConstIter<'a>);
/// Owns a reference to the source text.
/// [CstConstIter::next] emits subsequent pairs of:
/// * a [CstToken] and
/// * the source text remaining
/// * [ ] TODO: maybe [CstConstIter::next] should wrap the remaining source in `Self` ?
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct CstConstIter<'a>(pub &'a str);
/// A CST token, with reference to the source slice.
#[derive(Debug, Copy, Clone, Default, PartialEq)] pub struct CstToken<'source> {
pub source: &'source str,
pub start: usize,
pub length: usize,
pub value: CstValue<'source>,
}
/// The meaning of a CST token. Strip the source from this to get an [AstValue].
#[derive(Debug, Copy, Clone, Default, PartialEq)] pub enum CstValue<'source> {
#[default] Nil,
Err(DslError),
Num(usize),
Sym(&'source str),
Key(&'source str),
Str(&'source str),
Exp(usize, Cst<'source>),
}
impl<'a> Cst<'a> {
pub const fn new (source: &'a str) -> Self {
Self(CstConstIter::new(source))
}
pub const fn peek (&self) -> Option<CstToken<'a>> {
self.0.peek()
}
}
impl<'a> Iterator for Cst<'a> {
type Item = CstToken<'a>;
fn next (&mut self) -> Option<CstToken<'a>> {
self.0.next().map(|(item, rest)|{self.0 = rest; item})
}
}
impl<'a> From<&'a str> for Cst<'a> {
fn from (source: &'a str) -> Self{
Self(CstConstIter(source))
}
}
impl<'a> From<CstConstIter<'a>> for Cst<'a> {
fn from (source: CstConstIter<'a>) -> Self{
Self(source)
}
}
/// Implement the const iterator pattern.
#[macro_export] macro_rules! const_iter {
($(<$l:lifetime>)?|$self:ident: $Struct:ty| => $Item:ty => $expr:expr) => {
impl$(<$l>)? Iterator for $Struct {
type Item = $Item;
fn next (&mut $self) -> Option<$Item> { $expr }
}
impl$(<$l>)? ConstIntoIter for $Struct {
type Kind = IsIteratorKind;
type Item = $Item;
type IntoIter = Self;
}
}
}
const_iter!(<'a>|self: CstConstIter<'a>| => CstToken<'a> => self.next_mut().map(|(result, _)|result));
impl<'a> From<&'a str> for CstConstIter<'a> {
fn from (source: &'a str) -> Self{
Self::new(source)
}
}
impl<'a> CstConstIter<'a> {
pub const fn new (source: &'a str) -> Self {
Self(source)
}
pub const fn chomp (&self, index: usize) -> Self {
Self(split_at(self.0, index).1)
}
pub const fn next (mut self) -> Option<(CstToken<'a>, Self)> {
Self::next_mut(&mut self)
}
pub const fn peek (&self) -> Option<CstToken<'a>> {
peek_src(self.0)
}
pub const fn next_mut (&mut self) -> Option<(CstToken<'a>, Self)> {
match self.peek() {
Some(token) => Some((token, self.chomp(token.end()))),
None => None
}
}
}
/// Static iteration helper.
#[macro_export] macro_rules! iterate {
($expr:expr => $arg: pat => $body:expr) => {
let mut iter = $expr;
while let Some(($arg, next)) = iter.next() {
$body;
iter = next;
}
}
}
pub const fn peek_src <'a> (source: &'a str) -> Option<CstToken<'a>> {
use CstValue::*;
let mut token: CstToken<'a> = CstToken::new(source, 0, 0, Nil);
iterate!(char_indices(source) => (start, c) => token = match token.value() {
Err(_) => return Some(token),
Nil => match c {
' '|'\n'|'\r'|'\t' =>
token.grow(),
'(' =>
CstToken::new(source, start, 1, Exp(1, Cst::new(str_range(source, start, start + 1)))),
'"' =>
CstToken::new(source, start, 1, Str(str_range(source, start, start + 1))),
':'|'@' =>
CstToken::new(source, start, 1, Sym(str_range(source, start, start + 1))),
'/'|'a'..='z' =>
CstToken::new(source, start, 1, Key(str_range(source, start, start + 1))),
'0'..='9' =>
CstToken::new(source, start, 1, match to_digit(c) {
Ok(c) => CstValue::Num(c),
Result::Err(e) => CstValue::Err(e)
}),
_ => token.error(Unexpected(c))
},
Str(_) => match c {
'"' => return Some(token),
_ => token.grow_str(),
},
Num(n) => match c {
'0'..='9' => token.grow_num(n, c),
' '|'\n'|'\r'|'\t'|')' => return Some(token),
_ => token.error(Unexpected(c))
},
Sym(_) => match c {
'a'..='z'|'A'..='Z'|'0'..='9'|'-' => token.grow_sym(),
' '|'\n'|'\r'|'\t'|')' => return Some(token),
_ => token.error(Unexpected(c))
},
Key(_) => match c {
'a'..='z'|'0'..='9'|'-'|'/' => token.grow_key(),
' '|'\n'|'\r'|'\t'|')' => return Some(token),
_ => token.error(Unexpected(c))
},
Exp(depth, _) => match depth {
0 => return Some(token.grow_exp()),
_ => match c {
')' => token.grow_out(),
'(' => token.grow_in(),
_ => token.grow_exp(),
}
},
});
match token.value() {
Nil => None,
_ => Some(token),
}
}
pub const fn to_number (digits: &str) -> DslResult<usize> {
let mut value = 0;
iterate!(char_indices(digits) => (_, c) => match to_digit(c) {
Ok(digit) => value = 10 * value + digit,
Result::Err(e) => return Result::Err(e)
});
Ok(value)
}
pub const fn to_digit (c: char) -> DslResult<usize> {
Ok(match c {
'0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4,
'5' => 5, '6' => 6, '7' => 7, '8' => 8, '9' => 9,
_ => return Result::Err(Unexpected(c))
})
}
impl<'source> CstToken<'source> {
pub const fn new (
source: &'source str, start: usize, length: usize, value: CstValue<'source>
) -> Self {
Self { source, start, length, value }
}
pub const fn end (&self) -> usize {
self.start.saturating_add(self.length)
}
pub const fn slice (&'source self) -> &'source str {
self.slice_source(self.source)
}
pub const fn slice_source <'range> (&'source self, source: &'range str) -> &'range str {
str_range(source, self.start, self.end())
}
pub const fn slice_source_exp <'range> (&'source self, source: &'range str) -> &'range str {
str_range(source, self.start.saturating_add(1), self.end())
}
pub const fn with_value (self, value: CstValue<'source>) -> Self {
Self { value, ..self }
}
pub const fn value (&self) -> CstValue {
self.value
}
pub const fn error (self, error: DslError) -> Self {
Self { value: CstValue::Err(error), ..self }
}
pub const fn grow (self) -> Self {
Self { length: self.length.saturating_add(1), ..self }
}
pub const fn grow_num (self, m: usize, c: char) -> Self {
use CstValue::*;
match to_digit(c) {
Ok(n) => Self { value: Num(10*m+n), ..self.grow() },
Result::Err(e) => Self { value: Err(e), ..self.grow() },
}
}
pub const fn grow_key (self) -> Self {
use CstValue::*;
let token = self.grow();
token.with_value(Key(token.slice_source(self.source)))
}
pub const fn grow_sym (self) -> Self {
use CstValue::*;
let token = self.grow();
token.with_value(Sym(token.slice_source(self.source)))
}
pub const fn grow_str (self) -> Self {
use CstValue::*;
let token = self.grow();
token.with_value(Str(token.slice_source(self.source)))
}
pub const fn grow_exp (self) -> Self {
use CstValue::*;
let token = self.grow();
if let Exp(depth, _) = token.value {
token.with_value(Exp(depth, Cst::new(token.slice_source_exp(self.source))))
} else {
unreachable!()
}
}
pub const fn grow_in (self) -> Self {
let token = self.grow_exp();
if let CstValue::Exp(depth, source) = token.value {
token.with_value(CstValue::Exp(depth.saturating_add(1), source))
} else {
unreachable!()
}
}
pub const fn grow_out (self) -> Self {
let token = self.grow_exp();
if let CstValue::Exp(depth, source) = token.value {
if depth > 0 {
token.with_value(CstValue::Exp(depth - 1, source))
} else {
return self.error(Unexpected(')'))
}
} else {
unreachable!()
}
}
}
impl<'source> std::fmt::Display for CstValue<'source> {
fn fmt (&self, out: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
use CstValue::*;
write!(out, "{}", match self {
Nil => String::new(),
Err(e) => format!("[error: {e}]"),
Num(n) => format!("{n}"),
Sym(s) => format!("{s}"),
Key(s) => format!("{s}"),
Str(s) => format!("{s}"),
Exp(_, e) => format!("{e:?}"),
})
}
}

64
dsl/src/dsl_domain.rs Normal file
View file

@ -0,0 +1,64 @@
use crate::*;
pub trait Eval<Input, Output> {
fn eval (&self, input: Input) -> Perhaps<Output>;
}
/// May construct [Self] from token stream.
pub trait Dsl: Sized {
type State;
fn try_provide (state: Self::State, source: impl Ast) -> Perhaps<Self>;
fn provide <E: Into<Box<dyn std::error::Error>>, F: Fn()->E> (
state: Self::State, source: impl Ast, error: F
) -> Usually<Self> {
let next = source.peek().clone();
if let Some(value) = Self::try_provide(state, source)? {
Ok(value)
} else {
Result::Err(format!("dsl: {}: {next:?}", error().into()).into())
}
}
}
//pub trait Give<'state, 'source, Type> {
///// Implement this to be able to [Give] [Type] from the [Cst].
///// Advance the stream if returning `Ok<Some<Type>>`.
//fn give (&'state self, words: Cst<'source>) -> Perhaps<Type>;
///// Return custom error on [None].
//fn give_or_fail <E: Into<Box<dyn std::error::Error>>, F: Fn()->E> (
//&'state self, mut words: Cst<'source>, error: F
//) -> Usually<Type> {
//let next = words.peek().map(|x|x.value).clone();
//if let Some(value) = Give::<Type>::give(self, words)? {
//Ok(value)
//} else {
//Result::Err(format!("give: {}: {next:?}", error().into()).into())
//}
//}
//}
//#[macro_export] macro_rules! give {
//($Type:ty|$state:ident:$State:ident,$words:ident|$expr:expr) => {
//impl Give<$Type> for $State {
//fn give (&self, mut $words: Cst) -> Perhaps<$Type> {
//let $state = self;
//$expr
//}
//}
//};
//($Type:path$(,$Arg:ident)*|$state:ident,$words:ident|$expr:expr) => {
//impl<State: $(Give<$Arg>)++ $(, $Arg)*> Give<$Type> for State {
//fn give (&self, mut $words: Cst) -> Perhaps<$Type> {
//let $state = self;
//$expr
//}
//}
//}
//}
/////// Implement the [Give] trait, which boils down to
/////// specifying two types and providing an expression.
//#[macro_export] macro_rules! from_dsl {
//($Type:ty: |$state:ident:$State:ty, $words:ident|$expr:expr) => {
//give! { $Type|$state:$State,$words|$expr }
//};
//}

View file

@ -1,173 +0,0 @@
use crate::*;
/// Implement the const iterator pattern.
#[macro_export] macro_rules! const_iter {
($(<$l:lifetime>)?|$self:ident: $Struct:ty| => $Item:ty => $expr:expr) => {
impl$(<$l>)? Iterator for $Struct {
type Item = $Item;
fn next (&mut $self) -> Option<$Item> { $expr }
}
impl$(<$l>)? ConstIntoIter for $Struct {
type Kind = IsIteratorKind;
type Item = $Item;
type IntoIter = Self;
}
}
}
/// Provides a native [Iterator] API over the [ConstIntoIter] [SourceIter]
/// [TokenIter::next] returns just the [Token] and mutates `self`,
/// instead of returning an updated version of the struct as [SourceIter::next] does.
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct TokenIter<'a>(
pub SourceIter<'a>
);
impl<'a> TokenIter<'a> {
pub const fn new (source: &'a str) -> Self {
Self(SourceIter::new(source))
}
pub const fn peek (&self) -> Option<Token<'a>> {
self.0.peek()
}
}
impl<'a> Iterator for TokenIter<'a> {
type Item = Token<'a>;
fn next (&mut self) -> Option<Token<'a>> {
self.0.next().map(|(item, rest)|{self.0 = rest; item})
}
}
impl<'a> From<&'a str> for TokenIter<'a> {
fn from (source: &'a str) -> Self{
Self(SourceIter(source))
}
}
impl<'a> From<SourceIter<'a>> for TokenIter<'a> {
fn from (source: SourceIter<'a>) -> Self{
Self(source)
}
}
/// Owns a reference to the source text.
/// [SourceIter::next] emits subsequent pairs of:
/// * a [Token] and
/// * the source text remaining
/// * [ ] TODO: maybe [SourceIter::next] should wrap the remaining source in `Self` ?
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct SourceIter<'a>(pub &'a str);
const_iter!(<'a>|self: SourceIter<'a>| => Token<'a> => self.next_mut().map(|(result, _)|result));
impl<'a> From<&'a str> for SourceIter<'a> {
fn from (source: &'a str) -> Self{
Self::new(source)
}
}
impl<'a> SourceIter<'a> {
pub const fn new (source: &'a str) -> Self {
Self(source)
}
pub const fn chomp (&self, index: usize) -> Self {
Self(split_at(self.0, index).1)
}
pub const fn next (mut self) -> Option<(Token<'a>, Self)> {
Self::next_mut(&mut self)
}
pub const fn peek (&self) -> Option<Token<'a>> {
peek_src(self.0)
}
pub const fn next_mut (&mut self) -> Option<(Token<'a>, Self)> {
match self.peek() {
Some(token) => Some((token, self.chomp(token.end()))),
None => None
}
}
}
/// Static iteration helper.
#[macro_export] macro_rules! iterate {
($expr:expr => $arg: pat => $body:expr) => {
let mut iter = $expr;
while let Some(($arg, next)) = iter.next() {
$body;
iter = next;
}
}
}
pub const fn peek_src <'a> (source: &'a str) -> Option<Token<'a>> {
let mut token: Token<'a> = Token::new(source, 0, 0, Nil);
iterate!(char_indices(source) => (start, c) => token = match token.value() {
Err(_) => return Some(token),
Nil => match c {
' '|'\n'|'\r'|'\t' =>
token.grow(),
'(' =>
Token::new(source, start, 1, Exp(1, TokenIter::new(str_range(source, start, start + 1)))),
'"' =>
Token::new(source, start, 1, Str(str_range(source, start, start + 1))),
':'|'@' =>
Token::new(source, start, 1, Sym(str_range(source, start, start + 1))),
'/'|'a'..='z' =>
Token::new(source, start, 1, Key(str_range(source, start, start + 1))),
'0'..='9' =>
Token::new(source, start, 1, match to_digit(c) {
Ok(c) => Value::Num(c),
Result::Err(e) => Value::Err(e)
}),
_ => token.error(Unexpected(c))
},
Str(_) => match c {
'"' => return Some(token),
_ => token.grow_str(),
},
Num(n) => match c {
'0'..='9' => token.grow_num(n, c),
' '|'\n'|'\r'|'\t'|')' => return Some(token),
_ => token.error(Unexpected(c))
},
Sym(_) => match c {
'a'..='z'|'A'..='Z'|'0'..='9'|'-' => token.grow_sym(),
' '|'\n'|'\r'|'\t'|')' => return Some(token),
_ => token.error(Unexpected(c))
},
Key(_) => match c {
'a'..='z'|'0'..='9'|'-'|'/' => token.grow_key(),
' '|'\n'|'\r'|'\t'|')' => return Some(token),
_ => token.error(Unexpected(c))
},
Exp(depth, _) => match depth {
0 => return Some(token.grow_exp()),
_ => match c {
')' => token.grow_out(),
'(' => token.grow_in(),
_ => token.grow_exp(),
}
},
});
match token.value() {
Nil => None,
_ => Some(token),
}
}
pub const fn to_number (digits: &str) -> DslResult<usize> {
let mut value = 0;
iterate!(char_indices(digits) => (_, c) => match to_digit(c) {
Ok(digit) => value = 10 * value + digit,
Result::Err(e) => return Result::Err(e)
});
Ok(value)
}
pub const fn to_digit (c: char) -> DslResult<usize> {
Ok(match c {
'0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4,
'5' => 5, '6' => 6, '7' => 7, '8' => 8, '9' => 9,
_ => return Result::Err(Unexpected(c))
})
}

View file

@ -1,147 +0,0 @@
use crate::*;
///// Implement the [Give] trait, which boils down to
///// specifying two types and providing an expression.
#[macro_export] macro_rules! from_dsl {
($Type:ty: |$state:ident:$State:ty, $words:ident|$expr:expr) => {
take! { $Type|$state:$State,$words|$expr }
};
}
/// [Take]s instances of [Type] given [TokenIter].
pub trait Give<'state, Type> {
/// Implement this to be able to [Give] [Type] from the [TokenIter].
/// Advance the stream if returning `Ok<Some<Type>>`.
fn give <'source: 'state> (&self, words: TokenIter<'source>) -> Perhaps<Type>;
/// Return custom error on [None].
fn give_or_fail <'source: 'state, E: Into<Box<dyn std::error::Error>>, F: Fn()->E> (
&self, mut words: TokenIter<'source>, error: F
) -> Usually<Type> {
let next = words.peek().map(|x|x.value).clone();
if let Some(value) = Give::<Type>::give(self, words)? {
Ok(value)
} else {
Result::Err(format!("give: {}: {next:?}", error().into()).into())
}
}
}
#[macro_export] macro_rules! give {
() => {
impl<'state, Type: Take<'state, State>, State> Give<'state, Type> for State {
fn give <'source: 'state> (&self, mut words:TokenIter<'source>) -> Perhaps<Type> {
Type::take(self, words)
}
}
};
(box) => {
//impl<'state, T, Type: Take<'state, Box<T>>> Give<'state, Box<T>> for Box<Type> {
//fn give (&self, mut words:TokenIter<'source>) -> Perhaps<Box<Type>> {
//Type::take(self, words)
//}
//}
};
($Type:ty: $State:ty) => {
impl<'state, $Type: Take<'state, $State>> Give<'state, $Type> for $State {
fn give <'source: 'state> (&self, mut words:TokenIter<'source>) -> Perhaps<$Type> {
$Type::take(self, words)
}
}
};
($Type:ty|$state:ident:$State:ident,$words:ident|$expr:expr) => {
impl<'state> Give<'state, $Type> for $State {
fn give <'source: 'state> (&self, mut $words:TokenIter<'source>) -> Perhaps<$Type> {
let $state = self;
$expr
}
}
};
($Type:path$(,$Arg:ident)*|$state:ident,$words:ident|$expr:expr) => {
impl<'state, State: $(Give<'state, $Arg> +)* 'state $(, $Arg)*> Give<'state, $Type> for State {
fn give <'source: 'state> (&self, mut $words:TokenIter<'source>) -> Perhaps<$Type> {
let $state = self;
$expr
}
}
}
}
/// [Give]s instances of [Self] given [TokenIter].
pub trait Take<'state, State>: Sized {
/// Implement this to be able to [Take] [Self] from the [TokenIter].
/// Advance the stream if returning `Ok<Some<Self>>`.
fn take <'source: 'state> (state: &State, words: TokenIter<'source>) -> Perhaps<Self>;
/// Return custom error on [None].
fn take_or_fail <'source: 'state, E: Into<Box<dyn std::error::Error>>, F: Fn()->E> (
state: &State, mut words:TokenIter<'source>, error: F
) -> Usually<Self> {
let next = words.peek().map(|x|x.value).clone();
if let Some(value) = Take::<State>::take(state, words)? {
Ok(value)
} else {
Result::Err(format!("take: {}: {next:?}", error().into()).into())
}
}
}
#[macro_export] macro_rules! take {
() => {
impl<'state, Type: 'state, State: Give<'state, Type> + 'state> Take<'state, State> for Type {
fn take <'source: 'state> (state: &State, mut words:TokenIter<'source>) -> Perhaps<Self> {
state.give(words)
}
}
};
(box) => {
impl<'state, T, State: Give<'state, Box<T>> + 'state> Take<'state, State> for Box<T> {
fn take <'source: 'state> (state: &State, mut words:TokenIter<'source>) -> Perhaps<Self> {
state.give(words)
}
}
};
($Type:ty:$State:ty) => {
impl<'state> Take<'state, $State> for $Type {
fn take <'source: 'state> (state: &$State, mut words:TokenIter<'source>) -> Perhaps<Self> {
state.give(words)
}
}
};
($Type:path$(,$Arg:ident)*|$state:ident,$words:ident|$expr:expr) => {
impl<'state,
State: Give<'state, bool> + $(Give<'state, $Arg> + )* 'state
$(, $Arg: Take<'state, State> + 'state)*
> Take<'state, State> for $Type {
fn take <'source: 'state> ($state: &State, mut $words:TokenIter<'source>) -> Perhaps<Self> {
$expr
}
}
};
($Type:path$(,$Arg:ident)*|$state:ident:$State:path,$words:ident|$expr:expr) => {
impl<'state $(, $Arg: 'state)*> Take<'state, $State> for $Type {
fn take <'source: 'state> ($state: &$State, mut $words:TokenIter<'source>) -> Perhaps<Self> {
$expr
}
}
};
}
// auto impl graveyard:
//impl<'state, State: Give<Type>, Type: 'state> Take<'state, State> for Type {
//fn take <'state> (state: &State, mut words:TokenIter<'source>)
//-> Perhaps<Self>
//{
//state.take(words)
//}
//}
//#[cfg(feature="dsl")]
//impl<'state, E: 'state, State: Give<'state, Box<dyn Render<E> + 'state>>>
//Take<'state, State> for Box<dyn Render<E> + 'state> {
//fn take <'source: 'state> (state: &State, words: TokenIter<'source>) -> Perhaps<Self> {
//state.give(words)
//}
//}
impl<'state, Type: Take<'state, State>, State> Give<'state, Type> for State {
fn give <'source: 'state> (&self, words: TokenIter<'source>) -> Perhaps<Type> {
Type::take(self, words)
}
}

View file

@ -1,110 +0,0 @@
use crate::*;
#[derive(Debug, Copy, Clone, Default, PartialEq)] pub struct Token<'source> {
pub source: &'source str,
pub start: usize,
pub length: usize,
pub value: Value<'source>,
}
#[derive(Debug, Copy, Clone, Default, PartialEq)] pub enum Value<'source> {
#[default] Nil,
Err(DslError),
Num(usize),
Sym(&'source str),
Key(&'source str),
Str(&'source str),
Exp(usize, TokenIter<'source>),
}
impl<'source> std::fmt::Display for Value<'source> {
fn fmt (&self, out: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
write!(out, "{}", match self {
Nil => String::new(),
Err(e) => format!("[error: {e}]"),
Num(n) => format!("{n}"),
Sym(s) => format!("{s}"),
Key(s) => format!("{s}"),
Str(s) => format!("{s}"),
Exp(_, e) => format!("{e:?}"),
})
}
}
impl<'source> Token<'source> {
pub const fn new (
source: &'source str, start: usize, length: usize, value: Value<'source>
) -> Self {
Self { source, start, length, value }
}
pub const fn end (&self) -> usize {
self.start.saturating_add(self.length)
}
pub const fn slice (&'source self) -> &'source str {
self.slice_source(self.source)
}
pub const fn slice_source <'range> (&'source self, source: &'range str) -> &'range str {
str_range(source, self.start, self.end())
}
pub const fn slice_source_exp <'range> (&'source self, source: &'range str) -> &'range str {
str_range(source, self.start.saturating_add(1), self.end())
}
pub const fn with_value (self, value: Value<'source>) -> Self {
Self { value, ..self }
}
pub const fn value (&self) -> Value {
self.value
}
pub const fn error (self, error: DslError) -> Self {
Self { value: Value::Err(error), ..self }
}
pub const fn grow (self) -> Self {
Self { length: self.length.saturating_add(1), ..self }
}
pub const fn grow_num (self, m: usize, c: char) -> Self {
match to_digit(c) {
Ok(n) => Self { value: Num(10*m+n), ..self.grow() },
Result::Err(e) => Self { value: Err(e), ..self.grow() },
}
}
pub const fn grow_key (self) -> Self {
let token = self.grow();
token.with_value(Key(token.slice_source(self.source)))
}
pub const fn grow_sym (self) -> Self {
let token = self.grow();
token.with_value(Sym(token.slice_source(self.source)))
}
pub const fn grow_str (self) -> Self {
let token = self.grow();
token.with_value(Str(token.slice_source(self.source)))
}
pub const fn grow_exp (self) -> Self {
let token = self.grow();
if let Exp(depth, _) = token.value {
token.with_value(Exp(depth, TokenIter::new(token.slice_source_exp(self.source))))
} else {
unreachable!()
}
}
pub const fn grow_in (self) -> Self {
let token = self.grow_exp();
if let Value::Exp(depth, source) = token.value {
token.with_value(Value::Exp(depth.saturating_add(1), source))
} else {
unreachable!()
}
}
pub const fn grow_out (self) -> Self {
let token = self.grow_exp();
if let Value::Exp(depth, source) = token.value {
if depth > 0 {
token.with_value(Value::Exp(depth - 1, source))
} else {
return self.error(Unexpected(')'))
}
} else {
unreachable!()
}
}
}

View file

@ -42,13 +42,12 @@ pub(crate) use std::fmt::Debug;
pub(crate) use konst::iter::{ConstIntoIter, IsIteratorKind};
pub(crate) use konst::string::{split_at, str_range, char_indices};
pub(crate) use thiserror::Error;
pub(crate) use self::Value::*;
pub(crate) use self::DslError::*;
mod dsl_ast; pub use self::dsl_ast::*;
mod dsl_cst; pub use self::dsl_cst::*;
mod dsl_domain; pub use self::dsl_domain::*;
mod dsl_error; pub use self::dsl_error::*;
mod dsl_token; pub use self::dsl_token::*;
mod dsl_parse; pub use self::dsl_parse::*;
mod dsl_provide; pub use self::dsl_provide::*;
#[cfg(test)] mod test_token_iter {
use crate::*;

View file

@ -1,138 +1,66 @@
use crate::*;
use std::marker::PhantomData;
/// [Input] state that can be matched against a [Value].
pub trait DslInput: Input { fn matches_dsl (&self, token: &str) -> bool; }
/// A pre-configured mapping of input events to commands.
pub trait KeyMap<'k, S, C: Take<'k, S> + Command<S>, I: DslInput> {
/// Try to find a command that matches the current input event.
fn keybind_resolve (&self, state: &S, input: &I) -> Perhaps<C>;
/// List of input layers with optional conditional filters.
#[derive(Default, Debug)] pub struct InputLayers<S>(Vec<InputLayer<S>>);
#[derive(Default, Debug)] pub struct InputLayer<S>{
__: PhantomData<S>,
condition: Option<Box<dyn Ast>>,
bindings: Box<dyn Ast>,
}
/// A [SourceIter] can be a [KeyMap].
impl<'k, S, C: Take<'k, S> + Command<S>, I: DslInput> KeyMap<'k, S, C, I> for SourceIter<'k> {
fn keybind_resolve (&self, state: &S, input: &I) -> Perhaps<C> {
let mut iter = self.clone();
while let Some((token, rest)) = iter.next() {
iter = rest;
match token {
Token { value: Value::Exp(0, exp_iter), .. } => {
let mut exp_iter = exp_iter.clone();
match exp_iter.next() {
Some(Token { value: Value::Sym(binding), .. }) => {
if input.matches_dsl(binding) {
if let Some(command) = Take::take(state, exp_iter)? {
impl<S> InputLayers<S> {
pub fn new (layer: Box<dyn Ast>) -> Self
{ Self(vec![]).layer(layer) }
pub fn layer (mut self, layer: Box<dyn Ast>) -> Self
{ self.add_layer(layer); self }
pub fn layer_if (mut self, condition: Box<dyn Ast>, layer: Box<dyn Ast>) -> Self
{ self.add_layer_if(Some(condition), layer); self }
pub fn add_layer (&mut self, layer: Box<dyn Ast>) -> &mut Self
{ self.add_layer_if(None, layer.into()); self }
pub fn add_layer_if (
&mut self,
condition: Option<Box<dyn Ast>>,
bindings: Box<dyn Ast>
) -> &mut Self {
self.0.push(InputLayer { condition, bindings, __: Default::default() });
self
}
}
impl<S: Eval<I, O>, I: Input, O: Command<S>> Eval<I, O> for InputLayers<S> {
fn eval (&self, input: I) -> Perhaps<O> {
for layer in self.0.iter() {
if let Some(command) = Ok(if let Some(condition) = layer.condition.as_ref() {
if self.matches(condition)? {
self.state().eval(*self)?
} else {
None
}
} else {
self.state().eval(*self)?
})? {
return Ok(Some(command))
}
}
},
_ => panic!("invalid config (expected symbol)")
}
},
_ => panic!("invalid config (expected expression)")
}
}
Ok(None)
}
}
/// A [TokenIter] can be a [KeyMap].
impl<'k, S, C: Take<'k, S> + Command<S>, I: DslInput> KeyMap<'k, S, C, I> for TokenIter<'k> {
fn keybind_resolve (&self, state: &S, input: &I) -> Perhaps<C> {
let mut iter = self.clone();
while let Some(next) = iter.next() {
match next {
Token { value: Value::Exp(0, exp_iter), .. } => {
let mut e = exp_iter.clone();
match e.next() {
Some(Token { value: Value::Sym(binding), .. }) => {
if input.matches_dsl(binding) {
if let Some(command) = Take::take(state, e)? {
return Ok(Some(command))
}
}
},
_ => panic!("invalid config (expected symbol, got: {exp_iter:?})")
}
},
_ => panic!("invalid config (expected expression, got: {next:?})")
}
}
Ok(None)
}
}
pub type InputCondition<'k, S> = Box<dyn Fn(&S)->Usually<bool> + Send + Sync + 'k>;
/// A collection of pre-configured mappings of input events to commands,
/// which may be made available subject to given conditions.
pub struct InputMap<'k,
S,
C: Command<S> + Take<'k, S>,
I: DslInput,
M: KeyMap<'k, S, C, I>
> {
__: PhantomData<&'k (S, C, I)>,
pub layers: Vec<(InputCondition<'k, S>, M)>,
}
impl<'k,
S,
C: Command<S> + Take<'k, S>,
I: DslInput,
M: KeyMap<'k, S, C, I>
> Default for InputMap<'k, S, C, I, M>{
fn default () -> Self {
Self { __: PhantomData, layers: vec![] }
}
}
impl<'k, S, C: Command<S> + Take<'k, S>, I: DslInput, M: KeyMap<'k, S, C, I>>
InputMap<'k, S, C, I, M> {
pub fn new (keymap: M) -> Self {
Self::default().layer(keymap)
}
pub fn layer (mut self, keymap: M) -> Self {
self.add_layer(keymap);
self
}
pub fn add_layer (&mut self, keymap: M) -> &mut Self {
self.add_layer_if(Box::new(|_|Ok(true)), keymap);
self
}
pub fn layer_if (mut self, condition: InputCondition<'k, S>, keymap: M) -> Self {
self.add_layer_if(condition, keymap);
self
}
pub fn add_layer_if (&mut self, condition: InputCondition<'k, S>, keymap: M) -> &mut Self {
self.layers.push((Box::new(condition), keymap));
self
}
}
impl<'k, S, C: Command<S> + Take<'k, S>, I: DslInput, M: KeyMap<'k, S, C, I>>
std::fmt::Debug for InputMap<'k, S, C, I, M> {
fn fmt (&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
write!(f, "[InputMap: {} layer(s)]", self.layers.len())
}
}
/// An [InputMap] can be a [KeyMap].
impl<'k,
S,
C: Command<S> + Take<'k, S>,
I: DslInput,
M: KeyMap<'k, S, C, I>
> KeyMap<'k, S, C, I> for InputMap<'k, S, C, I, M> {
fn keybind_resolve (&self, state: &S, input: &I) -> Perhaps<C> {
for (condition, keymap) in self.layers.iter() {
if !condition(state)? {
continue
}
if let Some(command) = keymap.keybind_resolve(state, input)? {
return Ok(Some(command))
}
/// [Input] state that can be matched against a [CstValue].
pub trait InputState<S>: Input {
fn state (&self) -> &S;
fn matches (&self, condition: &Box<dyn Ast>) -> Usually<bool>;
}
impl<S: Eval<I, O>, I: InputState<S>, O: Command<S>> Eval<I, O>
for InputLayer<S> {
fn eval (&self, input: I) -> Perhaps<O> {
if let Some(AstToken::Exp(exp)) = iter.peek() {
let mut e = exp.clone();
if let Some(AstToken::Sym(binding)) = e.next()
&& input.matches_dsl(binding)
&& let Some(command) = Dsl::from_dsl(input.state(), e)? {
return Ok(Some(command))
} else {
unreachable!("InputLayer: expected symbol, got: {e:?}")
}
} else {
panic!("InputLayer: expected expression, got: {self:?}")
}
Ok(None)
}

View file

@ -3,8 +3,16 @@
#![feature(impl_trait_in_assoc_type)]
pub(crate) use tengri_core::*;
pub(crate) use std::marker::PhantomData;
#[cfg(feature = "dsl")] pub(crate) use ::tengri_dsl::*;
#[cfg(feature = "dsl")]
pub(crate) use ::tengri_dsl::*;
mod space; pub use self::space::*;
mod ops; pub use self::ops::*;
#[cfg(feature = "dsl")] mod ops_dsl;
mod output; pub use self::output::*;
#[cfg(test)] mod test;

View file

@ -1,10 +1,382 @@
//mod reduce; pub use self::reduce::*;
mod align; pub use self::align::*;
mod bsp; pub use self::bsp::*;
mod either; pub use self::either::*;
//! Transform:
//! ```
//! use ::tengri::{output::*, tui::*};
//! let area: [u16;4] = [10, 10, 20, 20];
//! fn test (area: [u16;4], item: &impl Content<TuiOut>, expected: [u16;4]) {
//! assert_eq!(Content::layout(item, area), expected);
//! assert_eq!(Render::layout(item, area), expected);
//! };
//! test(area, &(), [20, 20, 0, 0]);
//!
//! test(area, &Fill::xy(()), area);
//! test(area, &Fill::x(()), [10, 20, 20, 0]);
//! test(area, &Fill::y(()), [20, 10, 0, 20]);
//!
//! //FIXME:test(area, &Fixed::x(4, ()), [18, 20, 4, 0]);
//! //FIXME:test(area, &Fixed::y(4, ()), [20, 18, 0, 4]);
//! //FIXME:test(area, &Fixed::xy(4, 4, unit), [18, 18, 4, 4]);
//! ```
//! Align:
//! ```
//! use ::tengri::{output::*, tui::*};
//! let area: [u16;4] = [10, 10, 20, 20];
//! fn test (area: [u16;4], item: &impl Content<TuiOut>, expected: [u16;4]) {
//! assert_eq!(Content::layout(item, area), expected);
//! assert_eq!(Render::layout(item, area), expected);
//! };
//!
//! let four = ||Fixed::xy(4, 4, "");
//! test(area, &Align::nw(four()), [10, 10, 4, 4]);
//! test(area, &Align::n(four()), [18, 10, 4, 4]);
//! test(area, &Align::ne(four()), [26, 10, 4, 4]);
//! test(area, &Align::e(four()), [26, 18, 4, 4]);
//! test(area, &Align::se(four()), [26, 26, 4, 4]);
//! test(area, &Align::s(four()), [18, 26, 4, 4]);
//! test(area, &Align::sw(four()), [10, 26, 4, 4]);
//! test(area, &Align::w(four()), [10, 18, 4, 4]);
//!
//! let two_by_four = ||Fixed::xy(4, 2, "");
//! test(area, &Align::nw(two_by_four()), [10, 10, 4, 2]);
//! test(area, &Align::n(two_by_four()), [18, 10, 4, 2]);
//! test(area, &Align::ne(two_by_four()), [26, 10, 4, 2]);
//! test(area, &Align::e(two_by_four()), [26, 19, 4, 2]);
//! test(area, &Align::se(two_by_four()), [26, 28, 4, 2]);
//! test(area, &Align::s(two_by_four()), [18, 28, 4, 2]);
//! test(area, &Align::sw(two_by_four()), [10, 28, 4, 2]);
//! test(area, &Align::w(two_by_four()), [10, 19, 4, 2]);
//! ```
use crate::*;
use Direction::*;
mod map; pub use self::map::*;
mod memo; pub use self::memo::*;
mod stack; pub use self::stack::*;
mod thunk; pub use self::thunk::*;
mod transform; pub use self::transform::*;
mod when; pub use self::when::*;
/// Renders multiple things on top of each other,
#[macro_export] macro_rules! lay {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::b(bsp, $expr);)*; bsp }}
}
/// Stack southward.
#[macro_export] macro_rules! col {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::s(bsp, $expr);)*; bsp }};
}
/// Stack northward.
#[macro_export] macro_rules! col_up {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::n(bsp, $expr);)*; bsp }}
}
/// Stack eastward.
#[macro_export] macro_rules! row {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::e(bsp, $expr);)*; bsp }};
}
/// Show an item only when a condition is true.
pub struct When<A>(pub bool, pub A);
impl<A> When<A> {
/// Create a binary condition.
pub const fn new (c: bool, a: A) -> Self { Self(c, a) }
}
impl<E: Output, A: Render<E>> Content<E> for When<A> {
fn layout (&self, to: E::Area) -> E::Area {
let Self(cond, item) = self;
let mut area = E::Area::zero();
if *cond {
let item_area = item.layout(to);
area[0] = item_area.x();
area[1] = item_area.y();
area[2] = item_area.w();
area[3] = item_area.h();
}
area.into()
}
fn render (&self, to: &mut E) {
let Self(cond, item) = self;
if *cond { item.render(to) }
}
}
/// Show one item if a condition is true and another if the condition is false
pub struct Either<A, B>(pub bool, pub A, pub B);
impl<A, B> Either<A, B> {
/// Create a ternary view condition.
pub const fn new (c: bool, a: A, b: B) -> Self { Self(c, a, b) }
}
impl<E: Output, A: Render<E>, B: Render<E>> Content<E> for Either<A, B> {
fn layout (&self, to: E::Area) -> E::Area {
let Self(cond, a, b) = self;
if *cond { a.layout(to) } else { b.layout(to) }
}
fn render (&self, to: &mut E) {
let Self(cond, a, b) = self;
if *cond { a.render(to) } else { b.render(to) }
}
}
/// 9th of area to place.
#[derive(Debug, Copy, Clone, Default)]
pub enum Alignment { #[default] Center, X, Y, NW, N, NE, E, SE, S, SW, W }
pub struct Align<A>(Alignment, A);
impl<A> Align<A> {
#[inline] pub const fn c (a: A) -> Self { Self(Alignment::Center, a) }
#[inline] pub const fn x (a: A) -> Self { Self(Alignment::X, a) }
#[inline] pub const fn y (a: A) -> Self { Self(Alignment::Y, a) }
#[inline] pub const fn n (a: A) -> Self { Self(Alignment::N, a) }
#[inline] pub const fn s (a: A) -> Self { Self(Alignment::S, a) }
#[inline] pub const fn e (a: A) -> Self { Self(Alignment::E, a) }
#[inline] pub const fn w (a: A) -> Self { Self(Alignment::W, a) }
#[inline] pub const fn nw (a: A) -> Self { Self(Alignment::NW, a) }
#[inline] pub const fn sw (a: A) -> Self { Self(Alignment::SW, a) }
#[inline] pub const fn ne (a: A) -> Self { Self(Alignment::NE, a) }
#[inline] pub const fn se (a: A) -> Self { Self(Alignment::SE, a) }
}
impl<E: Output, A: Content<E>> Content<E> for Align<A> {
fn content (&self) -> impl Render<E> + '_ {
&self.1
}
fn layout (&self, on: E::Area) -> E::Area {
use Alignment::*;
let it = Render::layout(&self.content(), on).xywh();
let cx = on.x()+(on.w().minus(it.w())/2.into());
let cy = on.y()+(on.h().minus(it.h())/2.into());
let fx = (on.x()+on.w()).minus(it.w());
let fy = (on.y()+on.h()).minus(it.h());
let [x, y] = match self.0 {
Center => [cx, cy],
X => [cx, it.y()],
Y => [it.x(), cy],
NW => [on.x(), on.y()],
N => [cx, on.y()],
NE => [fx, on.y()],
W => [on.x(), cy],
E => [fx, cy],
SW => [on.x(), fy],
S => [cx, fy],
SE => [fx, fy],
}.into();
[x, y, it.w(), it.h()].into()
}
fn render (&self, to: &mut E) {
to.place(Content::layout(self, to.area()), &self.content())
}
}
/// A split or layer.
pub struct Bsp<A, B>(
pub(crate) Direction,
pub(crate) A,
pub(crate) B,
);
impl<A, B> Bsp<A, B> {
#[inline] pub const fn n (a: A, b: B) -> Self { Self(North, a, b) }
#[inline] pub const fn s (a: A, b: B) -> Self { Self(South, a, b) }
#[inline] pub const fn e (a: A, b: B) -> Self { Self(East, a, b) }
#[inline] pub const fn w (a: A, b: B) -> Self { Self(West, a, b) }
#[inline] pub const fn a (a: A, b: B) -> Self { Self(Above, a, b) }
#[inline] pub const fn b (a: A, b: B) -> Self { Self(Below, a, b) }
}
impl<E: Output, A: Content<E>, B: Content<E>> Content<E> for Bsp<A, B> {
fn layout (&self, outer: E::Area) -> E::Area { let [_, _, c] = self.areas(outer); c }
fn render (&self, to: &mut E) {
let [area_a, area_b, _] = self.areas(to.area());
let (a, b) = self.contents();
match self.0 {
Below => { to.place(area_a, a); to.place(area_b, b); },
_ => { to.place(area_b, b); to.place(area_a, a); }
}
}
}
impl<E: Output, A: Content<E>, B: Content<E>> BspAreas<E, A, B> for Bsp<A, B> {
fn direction (&self) -> Direction { self.0 }
fn contents (&self) -> (&A, &B) { (&self.1, &self.2) }
}
pub trait BspAreas<E: Output, A: Content<E>, B: Content<E>> {
fn direction (&self) -> Direction;
fn contents (&self) -> (&A, &B);
fn areas (&self, outer: E::Area) -> [E::Area;3] {
let direction = self.direction();
let [x, y, w, h] = outer.xywh();
let (a, b) = self.contents();
let [aw, ah] = a.layout(outer).wh();
let [bw, bh] = b.layout(match direction {
Above | Below => outer,
South => [x, y + ah, w, h.minus(ah)].into(),
North => [x, y, w, h.minus(ah)].into(),
East => [x + aw, y, w.minus(aw), h].into(),
West => [x, y, w.minus(aw), h].into(),
}).wh();
match direction {
Above | Below => {
let [x, y, w, h] = outer.center_xy([aw.max(bw), ah.max(bh)]);
let a = [(x + w/2.into()).minus(aw/2.into()), (y + h/2.into()).minus(ah/2.into()), aw, ah];
let b = [(x + w/2.into()).minus(bw/2.into()), (y + h/2.into()).minus(bh/2.into()), bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
South => {
let [x, y, w, h] = outer.center_xy([aw.max(bw), ah + bh]);
let a = [(x + w/2.into()).minus(aw/2.into()), y, aw, ah];
let b = [(x + w/2.into()).minus(bw/2.into()), y + ah, bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
North => {
let [x, y, w, h] = outer.center_xy([aw.max(bw), ah + bh]);
let a = [(x + (w/2.into())).minus(aw/2.into()), y + bh, aw, ah];
let b = [(x + (w/2.into())).minus(bw/2.into()), y, bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
East => {
let [x, y, w, h] = outer.center_xy([aw + bw, ah.max(bh)]);
let a = [x, (y + h/2.into()).minus(ah/2.into()), aw, ah];
let b = [x + aw, (y + h/2.into()).minus(bh/2.into()), bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
West => {
let [x, y, w, h] = outer.center_xy([aw + bw, ah.max(bh)]);
let a = [x + bw, (y + h/2.into()).minus(ah/2.into()), aw, ah];
let b = [x, (y + h/2.into()).minus(bh/2.into()), bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
}
}
}
/// Defines an enum that transforms its content
/// along either the X axis, the Y axis, or both.
macro_rules! transform_xy {
($x:literal $y:literal $xy:literal |$self:ident : $Enum:ident, $to:ident|$area:expr) => {
pub enum $Enum<A> { X(A), Y(A), XY(A) }
impl<A> $Enum<A> {
#[inline] pub const fn x (item: A) -> Self { Self::X(item) }
#[inline] pub const fn y (item: A) -> Self { Self::Y(item) }
#[inline] pub const fn xy (item: A) -> Self { Self::XY(item) }
}
impl<E: Output, T: Content<E>> Content<E> for $Enum<T> {
fn content (&self) -> impl Render<E> + '_ {
match self {
Self::X(item) => item,
Self::Y(item) => item,
Self::XY(item) => item,
}
}
fn layout (&$self, $to: <E as Output>::Area) -> <E as Output>::Area {
use $Enum::*;
$area
}
}
}
}
/// Defines an enum that parametrically transforms its content
/// along either the X axis, the Y axis, or both.
macro_rules! transform_xy_unit {
($x:literal $y:literal $xy:literal |$self:ident : $Enum:ident, $to:ident|$layout:expr) => {
pub enum $Enum<U, A> { X(U, A), Y(U, A), XY(U, U, A), }
impl<U, A> $Enum<U, A> {
#[inline] pub const fn x (x: U, item: A) -> Self { Self::X(x, item) }
#[inline] pub const fn y (y: U, item: A) -> Self { Self::Y(y, item) }
#[inline] pub const fn xy (x: U, y: U, item: A) -> Self { Self::XY(x, y, item) }
}
impl<E: Output, T: Content<E>> Content<E> for $Enum<E::Unit, T> {
fn layout (&$self, $to: E::Area) -> E::Area {
$layout.into()
}
fn content (&self) -> impl Render<E> + '_ {
use $Enum::*;
Some(match self { X(_, c) => c, Y(_, c) => c, XY(_, _, c) => c, })
}
}
impl<U: Coordinate, T> $Enum<U, T> {
#[inline] pub fn dx (&self) -> U {
use $Enum::*;
match self { X(x, _) => *x, Y(_, _) => 0.into(), XY(x, _, _) => *x, }
}
#[inline] pub fn dy (&self) -> U {
use $Enum::*;
match self { X(_, _) => 0.into(), Y(y, _) => *y, XY(_, y, _) => *y, }
}
}
}
}
transform_xy!("fill/x" "fill/y" "fill/xy" |self: Fill, to|{
let [x0, y0, wmax, hmax] = to.xywh();
let [x, y, w, h] = self.content().layout(to).xywh();
match self {
X(_) => [x0, y, wmax, h],
Y(_) => [x, y0, w, hmax],
XY(_) => [x0, y0, wmax, hmax],
}.into()
});
transform_xy_unit!("fixed/x" "fixed/y" "fixed/xy"|self: Fixed, area|{
let [x, y, w, h] = area.xywh();
let fixed_area = match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
};
let [x, y, w, h] = Render::layout(&self.content(), fixed_area.into()).xywh();
let fixed_area = match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
};
fixed_area
});
transform_xy_unit!("min/x" "min/y" "min/xy"|self: Min, area|{
let area = Render::layout(&self.content(), area);
match self {
Self::X(mw, _) => [area.x(), area.y(), area.w().max(*mw), area.h()],
Self::Y(mh, _) => [area.x(), area.y(), area.w(), area.h().max(*mh)],
Self::XY(mw, mh, _) => [area.x(), area.y(), area.w().max(*mw), area.h().max(*mh)],
}
});
transform_xy_unit!("max/x" "max/y" "max/xy"|self: Max, area|{
let [x, y, w, h] = area.xywh();
Render::layout(&self.content(), match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
}.into())
});
transform_xy_unit!("shrink/x" "shrink/y" "shrink/xy"|self: Shrink, area|Render::layout(
&self.content(),
[area.x(), area.y(), area.w().minus(self.dx()), area.h().minus(self.dy())].into()));
transform_xy_unit!("expand/x" "expand/y" "expand/xy"|self: Expand, area|Render::layout(
&self.content(),
[area.x(), area.y(), area.w().plus(self.dx()), area.h().plus(self.dy())].into()));
transform_xy_unit!("push/x" "push/y" "push/xy"|self: Push, area|{
let area = Render::layout(&self.content(), area);
[area.x().plus(self.dx()), area.y().plus(self.dy()), area.w(), area.h()]
});
transform_xy_unit!("pull/x" "pull/y" "pull/xy"|self: Pull, area|{
let area = Render::layout(&self.content(), area);
[area.x().minus(self.dx()), area.y().minus(self.dy()), area.w(), area.h()]
});
transform_xy_unit!("margin/x" "margin/y" "margin/xy"|self: Margin, area|{
let area = Render::layout(&self.content(), area);
let dx = self.dx();
let dy = self.dy();
[area.x().minus(dx), area.y().minus(dy), area.w().plus(dy.plus(dy)), area.h().plus(dy.plus(dy))]
});
transform_xy_unit!("padding/x" "padding/y" "padding/xy"|self: Padding, area|{
let area = Render::layout(&self.content(), area);
let dx = self.dx();
let dy = self.dy();
[area.x().plus(dx), area.y().plus(dy), area.w().minus(dy.plus(dy)), area.h().minus(dy.plus(dy))]
});

View file

@ -1,110 +0,0 @@
//! Aligns things to the container. Comes with caveats.
//! ```
//! use ::tengri::{output::*, tui::*};
//! let area: [u16;4] = [10, 10, 20, 20];
//! fn test (area: [u16;4], item: &impl Content<TuiOut>, expected: [u16;4]) {
//! assert_eq!(Content::layout(item, area), expected);
//! assert_eq!(Render::layout(item, area), expected);
//! };
//!
//! let four = ||Fixed::xy(4, 4, "");
//! test(area, &Align::nw(four()), [10, 10, 4, 4]);
//! test(area, &Align::n(four()), [18, 10, 4, 4]);
//! test(area, &Align::ne(four()), [26, 10, 4, 4]);
//! test(area, &Align::e(four()), [26, 18, 4, 4]);
//! test(area, &Align::se(four()), [26, 26, 4, 4]);
//! test(area, &Align::s(four()), [18, 26, 4, 4]);
//! test(area, &Align::sw(four()), [10, 26, 4, 4]);
//! test(area, &Align::w(four()), [10, 18, 4, 4]);
//!
//! let two_by_four = ||Fixed::xy(4, 2, "");
//! test(area, &Align::nw(two_by_four()), [10, 10, 4, 2]);
//! test(area, &Align::n(two_by_four()), [18, 10, 4, 2]);
//! test(area, &Align::ne(two_by_four()), [26, 10, 4, 2]);
//! test(area, &Align::e(two_by_four()), [26, 19, 4, 2]);
//! test(area, &Align::se(two_by_four()), [26, 28, 4, 2]);
//! test(area, &Align::s(two_by_four()), [18, 28, 4, 2]);
//! test(area, &Align::sw(two_by_four()), [10, 28, 4, 2]);
//! test(area, &Align::w(two_by_four()), [10, 19, 4, 2]);
//! ```
use crate::*;
#[derive(Debug, Copy, Clone, Default)]
pub enum Alignment { #[default] Center, X, Y, NW, N, NE, E, SE, S, SW, W }
pub struct Align<A>(Alignment, A);
#[cfg(feature = "dsl")]
impl<'state, State: Give<'state, A>, A: 'state> Take<'state, State> for Align<A> {
fn take <'source: 'state> (state: &State, words: TokenIter<'source>) -> Perhaps<Self> {
todo!()
}
}
//give!(Align<A>, A|state, words|Ok(Some(match words.peek() {
//Some(Token { value: Value::Key(key), .. }) => match key {
//"align/c"|"align/x"|"align/y"|
//"align/n"|"align/s"|"align/e"|"al;qign/w"|
//"align/nw"|"align/sw"|"align/ne"|"align/se" => {
//let _ = words.next().unwrap();
//let content = Take::take_or_fail(state, &mut words.clone(), ||"expected content")?;
//match key {
//"align/c" => Self::c(content),
//"align/x" => Self::x(content),
//"align/y" => Self::y(content),
//"align/n" => Self::n(content),
//"align/s" => Self::s(content),
//"align/e" => Self::e(content),
//"align/w" => Self::w(content),
//"align/nw" => Self::nw(content),
//"align/ne" => Self::ne(content),
//"align/sw" => Self::sw(content),
//"align/se" => Self::se(content),
//_ => unreachable!()
//}
//},
//_ => return Ok(None)
//},
//_ => return Ok(None)
//})));
impl<A> Align<A> {
#[inline] pub const fn c (a: A) -> Self { Self(Alignment::Center, a) }
#[inline] pub const fn x (a: A) -> Self { Self(Alignment::X, a) }
#[inline] pub const fn y (a: A) -> Self { Self(Alignment::Y, a) }
#[inline] pub const fn n (a: A) -> Self { Self(Alignment::N, a) }
#[inline] pub const fn s (a: A) -> Self { Self(Alignment::S, a) }
#[inline] pub const fn e (a: A) -> Self { Self(Alignment::E, a) }
#[inline] pub const fn w (a: A) -> Self { Self(Alignment::W, a) }
#[inline] pub const fn nw (a: A) -> Self { Self(Alignment::NW, a) }
#[inline] pub const fn sw (a: A) -> Self { Self(Alignment::SW, a) }
#[inline] pub const fn ne (a: A) -> Self { Self(Alignment::NE, a) }
#[inline] pub const fn se (a: A) -> Self { Self(Alignment::SE, a) }
}
impl<E: Output, A: Content<E>> Content<E> for Align<A> {
fn content (&self) -> impl Render<E> + '_ {
&self.1
}
fn layout (&self, on: E::Area) -> E::Area {
use Alignment::*;
let it = Render::layout(&self.content(), on).xywh();
let cx = on.x()+(on.w().minus(it.w())/2.into());
let cy = on.y()+(on.h().minus(it.h())/2.into());
let fx = (on.x()+on.w()).minus(it.w());
let fy = (on.y()+on.h()).minus(it.h());
let [x, y] = match self.0 {
Center => [cx, cy],
X => [cx, it.y()],
Y => [it.x(), cy],
NW => [on.x(), on.y()],
N => [cx, on.y()],
NE => [fx, on.y()],
W => [on.x(), cy],
E => [fx, cy],
SW => [on.x(), fy],
S => [cx, fy],
SE => [fx, fy],
}.into();
[x, y, it.w(), it.h()].into()
}
fn render (&self, to: &mut E) {
to.place(Content::layout(self, to.area()), &self.content())
}
}

View file

@ -1,122 +0,0 @@
use crate::*;
pub use Direction::*;
/// A split or layer.
pub struct Bsp<A, B>(
pub(crate) Direction,
pub(crate) A,
pub(crate) B,
);
impl<E: Output, A: Content<E>, B: Content<E>> Content<E> for Bsp<A, B> {
fn layout (&self, outer: E::Area) -> E::Area {
let [_, _, c] = self.areas(outer);
c
}
fn render (&self, to: &mut E) {
let [area_a, area_b, _] = self.areas(to.area());
let (a, b) = self.contents();
match self.0 {
Below => { to.place(area_a, a); to.place(area_b, b); },
_ => { to.place(area_b, b); to.place(area_a, a); }
}
}
}
#[cfg(feature = "dsl")] take!(Bsp<A, B>, A, B|state, words|Ok(if let Some(Token {
value: Value::Key("bsp/n"|"bsp/s"|"bsp/e"|"bsp/w"|"bsp/a"|"bsp/b"),
..
}) = words.peek() {
if let Value::Key(key) = words.next().unwrap().value() {
let base = words.clone();
let a: A = state.give_or_fail(words, ||"bsp: expected content 1")?;
let b: B = state.give_or_fail(words, ||"bsp: expected content 2")?;
return Ok(Some(match key {
"bsp/n" => Self::n(a, b),
"bsp/s" => Self::s(a, b),
"bsp/e" => Self::e(a, b),
"bsp/w" => Self::w(a, b),
"bsp/a" => Self::a(a, b),
"bsp/b" => Self::b(a, b),
_ => unreachable!(),
}))
} else {
unreachable!()
}
} else {
None
}));
impl<A, B> Bsp<A, B> {
#[inline] pub const fn n (a: A, b: B) -> Self { Self(North, a, b) }
#[inline] pub const fn s (a: A, b: B) -> Self { Self(South, a, b) }
#[inline] pub const fn e (a: A, b: B) -> Self { Self(East, a, b) }
#[inline] pub const fn w (a: A, b: B) -> Self { Self(West, a, b) }
#[inline] pub const fn a (a: A, b: B) -> Self { Self(Above, a, b) }
#[inline] pub const fn b (a: A, b: B) -> Self { Self(Below, a, b) }
}
pub trait BspAreas<E: Output, A: Content<E>, B: Content<E>> {
fn direction (&self) -> Direction;
fn contents (&self) -> (&A, &B);
fn areas (&self, outer: E::Area) -> [E::Area;3] {
let direction = self.direction();
let [x, y, w, h] = outer.xywh();
let (a, b) = self.contents();
let [aw, ah] = a.layout(outer).wh();
let [bw, bh] = b.layout(match direction {
Above | Below => outer,
South => [x, y + ah, w, h.minus(ah)].into(),
North => [x, y, w, h.minus(ah)].into(),
East => [x + aw, y, w.minus(aw), h].into(),
West => [x, y, w.minus(aw), h].into(),
}).wh();
match direction {
Above | Below => {
let [x, y, w, h] = outer.center_xy([aw.max(bw), ah.max(bh)]);
let a = [(x + w/2.into()).minus(aw/2.into()), (y + h/2.into()).minus(ah/2.into()), aw, ah];
let b = [(x + w/2.into()).minus(bw/2.into()), (y + h/2.into()).minus(bh/2.into()), bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
South => {
let [x, y, w, h] = outer.center_xy([aw.max(bw), ah + bh]);
let a = [(x + w/2.into()).minus(aw/2.into()), y, aw, ah];
let b = [(x + w/2.into()).minus(bw/2.into()), y + ah, bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
North => {
let [x, y, w, h] = outer.center_xy([aw.max(bw), ah + bh]);
let a = [(x + (w/2.into())).minus(aw/2.into()), y + bh, aw, ah];
let b = [(x + (w/2.into())).minus(bw/2.into()), y, bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
East => {
let [x, y, w, h] = outer.center_xy([aw + bw, ah.max(bh)]);
let a = [x, (y + h/2.into()).minus(ah/2.into()), aw, ah];
let b = [x + aw, (y + h/2.into()).minus(bh/2.into()), bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
West => {
let [x, y, w, h] = outer.center_xy([aw + bw, ah.max(bh)]);
let a = [x + bw, (y + h/2.into()).minus(ah/2.into()), aw, ah];
let b = [x, (y + h/2.into()).minus(bh/2.into()), bw, bh];
[a.into(), b.into(), [x, y, w, h].into()]
},
}
}
}
impl<E: Output, A: Content<E>, B: Content<E>> BspAreas<E, A, B> for Bsp<A, B> {
fn direction (&self) -> Direction { self.0 }
fn contents (&self) -> (&A, &B) { (&self.1, &self.2) }
}
/// Renders multiple things on top of each other,
#[macro_export] macro_rules! lay {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::b(bsp, $expr);)*; bsp }}
}
/// Stack southward.
#[macro_export] macro_rules! col {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::s(bsp, $expr);)*; bsp }};
}
/// Stack northward.
#[macro_export] macro_rules! col_up {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::n(bsp, $expr);)*; bsp }}
}
/// Stack eastward.
#[macro_export] macro_rules! row {
($($expr:expr),* $(,)?) => {{ let bsp = (); $(let bsp = Bsp::e(bsp, $expr);)*; bsp }};
}

View file

@ -1,32 +0,0 @@
use crate::*;
/// Show one item if a condition is true and another if the condition is false
pub struct Either<A, B>(pub bool, pub A, pub B);
impl<A, B> Either<A, B> {
/// Create a ternary condition.
pub const fn new (c: bool, a: A, b: B) -> Self {
Self(c, a, b)
}
}
#[cfg(feature = "dsl")] take!(Either<A, B>, A, B|state, words|Ok(
if let Some(Token { value: Value::Key("either"), .. }) = words.peek() {
let base = words.clone();
let _ = words.next().unwrap();
return Ok(Some(Self(
state.give_or_fail(words, ||"either: no condition")?,
state.give_or_fail(words, ||"either: no content 1")?,
state.give_or_fail(words, ||"either: no content 2")?,
)))
} else {
None
}));
impl<E: Output, A: Render<E>, B: Render<E>> Content<E> for Either<A, B> {
fn layout (&self, to: E::Area) -> E::Area {
let Self(cond, a, b) = self;
if *cond { a.layout(to) } else { b.layout(to) }
}
fn render (&self, to: &mut E) {
let Self(cond, a, b) = self;
if *cond { a.render(to) } else { b.render(to) }
}
}

View file

@ -1,192 +0,0 @@
//! [Content] items that modify the inherent
//! dimensions of their inner [Render]ables.
//!
//! Transform may also react to the [Area] taked.
//! ```
//! use ::tengri::{output::*, tui::*};
//! let area: [u16;4] = [10, 10, 20, 20];
//! fn test (area: [u16;4], item: &impl Content<TuiOut>, expected: [u16;4]) {
//! assert_eq!(Content::layout(item, area), expected);
//! assert_eq!(Render::layout(item, area), expected);
//! };
//! test(area, &(), [20, 20, 0, 0]);
//!
//! test(area, &Fill::xy(()), area);
//! test(area, &Fill::x(()), [10, 20, 20, 0]);
//! test(area, &Fill::y(()), [20, 10, 0, 20]);
//!
//! //FIXME:test(area, &Fixed::x(4, ()), [18, 20, 4, 0]);
//! //FIXME:test(area, &Fixed::y(4, ()), [20, 18, 0, 4]);
//! //FIXME:test(area, &Fixed::xy(4, 4, unit), [18, 18, 4, 4]);
//! ```
use crate::*;
/// Defines an enum that transforms its content
/// along either the X axis, the Y axis, or both.
macro_rules! transform_xy {
($x:literal $y:literal $xy:literal |$self:ident : $Enum:ident, $to:ident|$area:expr) => {
pub enum $Enum<A> { X(A), Y(A), XY(A) }
impl<A> $Enum<A> {
#[inline] pub const fn x (item: A) -> Self { Self::X(item) }
#[inline] pub const fn y (item: A) -> Self { Self::Y(item) }
#[inline] pub const fn xy (item: A) -> Self { Self::XY(item) }
}
#[cfg(feature = "dsl")] take!($Enum<A>, A|state, words|Ok(
if let Some(Token { value: Value::Key(k), .. }) = words.peek() {
let mut base = words.clone();
let content = state.give_or_fail(words, ||format!("{k}: no content"))?;
return Ok(Some(match words.next() {
Some(Token{value: Value::Key($x),..}) => Self::x(content),
Some(Token{value: Value::Key($y),..}) => Self::y(content),
Some(Token{value: Value::Key($xy),..}) => Self::xy(content),
_ => unreachable!()
}))
} else {
None
}));
impl<E: Output, T: Content<E>> Content<E> for $Enum<T> {
fn content (&self) -> impl Render<E> + '_ {
match self {
Self::X(item) => item,
Self::Y(item) => item,
Self::XY(item) => item,
}
}
fn layout (&$self, $to: <E as Output>::Area) -> <E as Output>::Area {
use $Enum::*;
$area
}
}
}
}
/// Defines an enum that parametrically transforms its content
/// along either the X axis, the Y axis, or both.
macro_rules! transform_xy_unit {
($x:literal $y:literal $xy:literal |$self:ident : $Enum:ident, $to:ident|$layout:expr) => {
pub enum $Enum<U, A> { X(U, A), Y(U, A), XY(U, U, A), }
impl<U, A> $Enum<U, A> {
#[inline] pub const fn x (x: U, item: A) -> Self { Self::X(x, item) }
#[inline] pub const fn y (y: U, item: A) -> Self { Self::Y(y, item) }
#[inline] pub const fn xy (x: U, y: U, item: A) -> Self { Self::XY(x, y, item) }
}
#[cfg(feature = "dsl")] take!($Enum<U, A>, U, A|state, words|Ok(
if let Some(Token { value: Value::Key($x|$y|$xy), .. }) = words.peek() {
let mut base = words.clone();
Some(match words.next() {
Some(Token { value: Value::Key($x), .. }) => Self::x(
state.give_or_fail(words, ||"x: no unit")?,
state.give_or_fail(words, ||"x: no content")?,
),
Some(Token { value: Value::Key($y), .. }) => Self::y(
state.give_or_fail(words, ||"y: no unit")?,
state.give_or_fail(words, ||"y: no content")?,
),
Some(Token { value: Value::Key($x), .. }) => Self::xy(
state.give_or_fail(words, ||"xy: no unit x")?,
state.give_or_fail(words, ||"xy: no unit y")?,
state.give_or_fail(words, ||"xy: no content")?
),
_ => unreachable!(),
})
} else {
None
}));
impl<E: Output, T: Content<E>> Content<E> for $Enum<E::Unit, T> {
fn layout (&$self, $to: E::Area) -> E::Area {
$layout.into()
}
fn content (&self) -> impl Render<E> + '_ {
use $Enum::*;
Some(match self { X(_, c) => c, Y(_, c) => c, XY(_, _, c) => c, })
}
}
impl<U: Coordinate, T> $Enum<U, T> {
#[inline] pub fn dx (&self) -> U {
use $Enum::*;
match self { X(x, _) => *x, Y(_, _) => 0.into(), XY(x, _, _) => *x, }
}
#[inline] pub fn dy (&self) -> U {
use $Enum::*;
match self { X(_, _) => 0.into(), Y(y, _) => *y, XY(_, y, _) => *y, }
}
}
}
}
transform_xy!("fill/x" "fill/y" "fill/xy" |self: Fill, to|{
let [x0, y0, wmax, hmax] = to.xywh();
let [x, y, w, h] = self.content().layout(to).xywh();
match self {
X(_) => [x0, y, wmax, h],
Y(_) => [x, y0, w, hmax],
XY(_) => [x0, y0, wmax, hmax],
}.into()
});
transform_xy_unit!("fixed/x" "fixed/y" "fixed/xy"|self: Fixed, area|{
let [x, y, w, h] = area.xywh();
let fixed_area = match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
};
let [x, y, w, h] = Render::layout(&self.content(), fixed_area.into()).xywh();
let fixed_area = match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
};
fixed_area
});
transform_xy_unit!("min/x" "min/y" "min/xy"|self: Min, area|{
let area = Render::layout(&self.content(), area);
match self {
Self::X(mw, _) => [area.x(), area.y(), area.w().max(*mw), area.h()],
Self::Y(mh, _) => [area.x(), area.y(), area.w(), area.h().max(*mh)],
Self::XY(mw, mh, _) => [area.x(), area.y(), area.w().max(*mw), area.h().max(*mh)],
}
});
transform_xy_unit!("max/x" "max/y" "max/xy"|self: Max, area|{
let [x, y, w, h] = area.xywh();
Render::layout(&self.content(), match self {
Self::X(fw, _) => [x, y, *fw, h],
Self::Y(fh, _) => [x, y, w, *fh],
Self::XY(fw, fh, _) => [x, y, *fw, *fh],
}.into())
});
transform_xy_unit!("shrink/x" "shrink/y" "shrink/xy"|self: Shrink, area|Render::layout(
&self.content(),
[area.x(), area.y(), area.w().minus(self.dx()), area.h().minus(self.dy())].into()));
transform_xy_unit!("expand/x" "expand/y" "expand/xy"|self: Expand, area|Render::layout(
&self.content(),
[area.x(), area.y(), area.w().plus(self.dx()), area.h().plus(self.dy())].into()));
transform_xy_unit!("push/x" "push/y" "push/xy"|self: Push, area|{
let area = Render::layout(&self.content(), area);
[area.x().plus(self.dx()), area.y().plus(self.dy()), area.w(), area.h()]
});
transform_xy_unit!("pull/x" "pull/y" "pull/xy"|self: Pull, area|{
let area = Render::layout(&self.content(), area);
[area.x().minus(self.dx()), area.y().minus(self.dy()), area.w(), area.h()]
});
transform_xy_unit!("margin/x" "margin/y" "margin/xy"|self: Margin, area|{
let area = Render::layout(&self.content(), area);
let dx = self.dx();
let dy = self.dy();
[area.x().minus(dx), area.y().minus(dy), area.w().plus(dy.plus(dy)), area.h().plus(dy.plus(dy))]
});
transform_xy_unit!("padding/x" "padding/y" "padding/xy"|self: Padding, area|{
let area = Render::layout(&self.content(), area);
let dx = self.dx();
let dy = self.dy();
[area.x().plus(dx), area.y().plus(dy), area.w().minus(dy.plus(dy)), area.h().minus(dy.plus(dy))]
});

View file

@ -1,38 +0,0 @@
use crate::*;
/// Show an item only when a condition is true.
pub struct When<A>(pub bool, pub A);
impl<A> When<A> {
/// Create a binary condition.
pub const fn new (c: bool, a: A) -> Self {
Self(c, a)
}
}
#[cfg(feature = "dsl")]take!(When<A>, A|state, words|Ok(Some(match words.peek() {
Some(Token { value: Value::Key("when"), .. }) => {
let _ = words.next();
let base = words.clone();
let cond = state.give_or_fail(words, ||"cond: no condition")?;
let cont = state.give_or_fail(words, ||"cond: no content")?;
Self(cond, cont)
},
_ => return Ok(None)
})));
impl<E: Output, A: Render<E>> Content<E> for When<A> {
fn layout (&self, to: E::Area) -> E::Area {
let Self(cond, item) = self;
let mut area = E::Area::zero();
if *cond {
let item_area = item.layout(to);
area[0] = item_area.x();
area[1] = item_area.y();
area[2] = item_area.w();
area[3] = item_area.h();
}
area.into()
}
fn render (&self, to: &mut E) {
let Self(cond, item) = self;
if *cond { item.render(to) }
}
}

185
output/src/ops_dsl.rs Normal file
View file

@ -0,0 +1,185 @@
use crate::*;
impl<I: Ast, S, A> Eval<I, When<A>> for S where
S: Eval<AstValue, bool> + Eval<AstValue, A>
{
fn eval (&self, source: I) -> Perhaps<Self> {
Ok(match source.peek() {
Some(Value::Key("when")) => Some(Self(
self.provide(source, ||"when: expected condition")?,
self.provide(source, ||"when: expected content")?,
)),
_ => None
})
}
}
impl<I: Ast, S, A, B> Eval<I, Either<A, B>> for S where
S: Eval<AstValue, bool> + Eval<AstValue, A> + Eval<AstValue, B>
{
fn eval (&self, source: I) -> Perhaps<Self> {
Ok(match source.peek() {
Some(Value::Key("either")) => Some(Self(
self.provide(source, ||"either: expected condition")?,
self.provide(source, ||"either: expected content 1")?,
self.provide(source, ||"either: expected content 2")?
)),
_ => None
})
}
}
impl<I: Ast, S, A, B> Eval<I, Bsp<A, B>> for S where
S: Eval<AstValue, A> + Eval<AstValue, B>
{
fn eval (&self, source: I) -> Perhaps<Self> {
Ok(if let Some(Value::Key(key)) = source.peek() {
Some(match key {
"bsp/n" => {
let _ = source.next();
let a: A = self.provide(source, ||"bsp/n: expected content 1")?;
let b: B = self.provide(source, ||"bsp/n: expected content 2")?;
Self::n(a, b)
},
"bsp/s" => {
let _ = source.next();
let a: A = self.provide(source, ||"bsp/s: expected content 1")?;
let b: B = self.provide(source, ||"bsp/s: expected content 2")?;
Self::s(a, b)
},
"bsp/e" => {
let _ = source.next();
let a: A = self.provide(source, ||"bsp/e: expected content 1")?;
let b: B = self.provide(source, ||"bsp/e: expected content 2")?;
Self::e(a, b)
},
"bsp/w" => {
let _ = source.next();
let a: A = self.provide(source, ||"bsp/w: expected content 1")?;
let b: B = self.provide(source, ||"bsp/w: expected content 2")?;
Self::w(a, b)
},
"bsp/a" => {
let _ = source.next();
let a: A = self.provide(source, ||"bsp/a: expected content 1")?;
let b: B = self.provide(source, ||"bsp/a: expected content 2")?;
Self::a(a, b)
},
"bsp/b" => {
let _ = source.next();
let a: A = self.provide(source, ||"bsp/b: expected content 1")?;
let b: B = self.provide(source, ||"bsp/b: expected content 2")?;
Self::b(a, b)
},
_ => return Ok(None),
})
} else {
None
})
}
}
impl<I: Ast, S, A> Eval<I, Align<A>> for S where
S: Eval<AstValue, A>
{
fn eval (&self, source: I) -> Perhaps<Self> {
Ok(if let Some(Value::Key(key)) = source.peek() {
Some(match key {
"align/c" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/c: expected content")?;
Self::c(content)
},
"align/x" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/x: expected content")?;
Self::x(content)
},
"align/y" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/y: expected content")?;
Self::y(content)
},
"align/n" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/n: expected content")?;
Self::n(content)
},
"align/s" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/s: expected content")?;
Self::s(content)
},
"align/e" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/e: expected content")?;
Self::e(content)
},
"align/w" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/w: expected content")?;
Self::w(content)
},
"align/nw" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/nw: expected content")?;
Self::nw(content)
},
"align/ne" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/ne: expected content")?;
Self::ne(content)
},
"align/sw" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/sw: expected content")?;
Self::sw(content)
},
"align/se" => {
let _ = source.next();
let content: A = self.provide(source, ||"align/se: expected content")?;
Self::se(content)
},
_ => return Ok(None),
})
} else {
None
})
}
}
//#[cfg(feature = "dsl")] take!($Enum<A>, A|state, words|Ok(
//if let Some(Token { value: Value::Key(k), .. }) = words.peek() {
//let mut base = words.clone();
//let content = state.give_or_fail(words, ||format!("{k}: no content"))?;
//return Ok(Some(match words.next() {
//Some(Token{value: Value::Key($x),..}) => Self::x(content),
//Some(Token{value: Value::Key($y),..}) => Self::y(content),
//Some(Token{value: Value::Key($xy),..}) => Self::xy(content),
//_ => unreachable!()
//}))
//} else {
//None
//}));
//#[cfg(feature = "dsl")] take!($Enum<U, A>, U, A|state, words|Ok(
//if let Some(Token { value: Value::Key($x|$y|$xy), .. }) = words.peek() {
//let mut base = words.clone();
//Some(match words.next() {
//Some(Token { value: Value::Key($x), .. }) => Self::x(
//state.give_or_fail(words, ||"x: no unit")?,
//state.give_or_fail(words, ||"x: no content")?,
//),
//Some(Token { value: Value::Key($y), .. }) => Self::y(
//state.give_or_fail(words, ||"y: no unit")?,
//state.give_or_fail(words, ||"y: no content")?,
//),
//Some(Token { value: Value::Key($x), .. }) => Self::xy(
//state.give_or_fail(words, ||"xy: no unit x")?,
//state.give_or_fail(words, ||"xy: no unit y")?,
//state.give_or_fail(words, ||"xy: no content")?
//),
//_ => unreachable!(),
//})
//} else {
//None
//}));

View file

@ -1,4 +1,5 @@
use crate::*;
use crate::Direction::*;
/// A cardinal direction.
#[derive(Copy, Clone, PartialEq, Debug)]

View file

@ -149,10 +149,8 @@ impl ToTokens for CommandDef {
}
}
/// Generated by [tengri_proc::command].
impl<'state> ::tengri::dsl::Take<'state, #state> for #command_enum {
fn take <'source: 'state> (
state: &#state, mut words: ::tengri::dsl::TokenIter<'source>
) -> Perhaps<Self> {
impl ::tengri::dsl::Take<#state> for #command_enum {
fn take (state: &#state, mut words: ::tengri::dsl::Cst) -> Perhaps<Self> {
let mut words = words.clone();
let token = words.next();
todo!()//Ok(match token { #(#matchers)* _ => None })

View file

@ -85,10 +85,8 @@ impl ToTokens for ExposeImpl {
});
write_quote_to(out, quote! {
/// Generated by [tengri_proc::expose].
impl<'n> ::tengri::dsl::Take<'n, #state> for #t {
fn take <'source: 'n> (
state: &#state, mut words: ::tengri::dsl::TokenIter<'source>
) -> Perhaps<Self> {
impl ::tengri::dsl::Take<#state> for #t {
fn take (state: &#state, mut words: ::tengri::dsl::Cst) -> Perhaps<Self> {
Ok(Some(match words.next().map(|x|x.value) {
#predefined
#(#values)*

View file

@ -43,50 +43,38 @@ impl ToTokens for ViewDef {
let self_ty = &block.self_ty;
// Expressions are handled by built-in functions
// that operate over constants and symbols.
let builtin = builtins_with_boxes_output(quote! { #output });
let builtin = builtins_with_boxes_output(quote! { #output }).map(|builtin|quote! {
::tengri::dsl::Value::Exp(_, expr) => return Ok(Some(
#builtin::take_or_fail(state, expr, ||"failed to load builtin")?.boxed()
)),
});
// Symbols are handled by user-taked functions
// that take no parameters but `&self`.
let exposed = exposed.iter().map(|(key, value)|write_quote(quote! {
::tengri::dsl::Value::Sym(#key) => Some(Box::new(Thunk::new(
move||#self_ty::#value(state))))}));
::tengri::dsl::Value::Sym(#key) => return Ok(Some(
state.#value().boxed()
)),
}));
write_quote_to(out, quote! {
// Original user-taked implementation:
#block
/// Generated by [tengri_proc].
///
/// Makes [#self_ty] able to construct the [Render]able
/// which might correspond to a given [TokenStream],
/// while taking [#self_ty]'s state into consideration.
impl<'state: 'static> Take<'state, #self_ty> for Box<dyn Render<#output> + 'state> {
fn take <'source: 'state> (state: &#self_ty, mut words: TokenIter<'source>)
-> Perhaps<Box<dyn Render<#output> + 'state>>
impl<'source, 'state: 'source>
Take<'state, 'source, #self_ty>
for Box<dyn Render<#output> + 'state>
{
//let state = self;
fn take (state: &'state #self_ty, mut words: Cst<'source>) -> Perhaps<Self> {
Ok(if let Some(::tengri::dsl::Token { value, .. }) = words.peek() {
match value {
#(::tengri::dsl::Value::Exp(_, expr) => {
Give::<'state, #builtin>::give(state, expr)?.map(|value|value.boxed())
},)*
#(
#exposed,
)*
_ => None
}
match value { #(#builtin)* #(#exposed)* _ => None }
} else {
None
})
}
}
/// Generated by [tengri_proc].
///
/// Delegates the rendering of [#self_ty] to the [#self_ty::view} method,
/// which you will need to implement, e.g. passing a [TokenIter]
/// containing a layout and keybindings config from user dirs.
impl ::tengri::output::Content<#output> for #self_ty {
fn content (&self) -> impl Render<#output> + '_ {
#self_ty::view(self)
}
}
// Original user-taked implementation:
#block
})
}
}
@ -96,11 +84,11 @@ fn builtins_with_holes () -> impl Iterator<Item=TokenStream2> {
}
fn builtins_with_boxes () -> impl Iterator<Item=TokenStream2> {
builtins_with(quote! { _ }, quote! { Box<dyn Render<_>+'state> })
builtins_with(quote! { _ }, quote! { Box<dyn Render<_>> })
}
fn builtins_with_boxes_output (o: TokenStream2) -> impl Iterator<Item=TokenStream2> {
builtins_with(quote! { _ }, quote! { Box<dyn Render<#o>+'state> })
builtins_with(quote! { _ }, quote! { Box<dyn Render<#o>> })
}
fn builtins_with (n: TokenStream2, c: TokenStream2) -> impl Iterator<Item=TokenStream2> {