tek/crates/device/src/sampler/sampler_audio.rs

125 lines
4.2 KiB
Rust

use crate::*;
audio!(|self: Sampler, _client, scope|{
self.process_midi_in(scope);
self.process_audio_out(scope);
self.process_audio_in(scope);
Control::Continue
});
impl Sampler {
pub fn process_audio_in (&mut self, scope: &ProcessScope) {
self.reset_input_meters();
if self.recording.is_some() {
self.record_into(scope);
} else {
self.update_input_meters(scope);
}
}
/// Make sure that input meter count corresponds to input channel count
fn reset_input_meters (&mut self) {
let channels = self.audio_ins.len();
if self.input_meters.len() != channels {
self.input_meters = vec![f32::MIN;channels];
}
}
/// Record from inputs to sample
fn record_into (&mut self, scope: &ProcessScope) {
let mut sample = self.recording
.as_mut().expect("no recording sample").1
.write().unwrap();
if sample.channels.len() != self.audio_ins.len() {
panic!("channel count mismatch");
}
let samples_with_meters = self.audio_ins.iter()
.zip(self.input_meters.iter_mut())
.zip(sample.channels.iter_mut());
let mut length = 0;
for ((input, meter), channel) in samples_with_meters {
let slice = input.port().as_slice(scope);
length = length.max(slice.len());
*meter = to_rms(slice);
channel.extend_from_slice(slice);
}
sample.end += length;
}
/// Update input meters
fn update_input_meters (&mut self, scope: &ProcessScope) {
for (input, meter) in self.audio_ins.iter().zip(self.input_meters.iter_mut()) {
let slice = input.port().as_slice(scope);
*meter = to_rms(slice);
}
}
/// Make sure that output meter count corresponds to input channel count
fn reset_output_meters (&mut self) {
let channels = self.audio_outs.len();
if self.output_meters.len() != channels {
self.output_meters = vec![f32::MIN;channels];
}
}
/// Mix all currently playing samples into the output.
pub fn process_audio_out (&mut self, scope: &ProcessScope) {
self.clear_output_buffer();
self.populate_output_buffer(scope.n_frames() as usize);
self.write_output_buffer(scope);
}
/// Zero the output buffer.
fn clear_output_buffer (&mut self) {
for buffer in self.buffer.iter_mut() {
buffer.fill(0.0);
}
}
/// Write playing voices to output buffer
fn populate_output_buffer (&mut self, frames: usize) {
let Sampler { ref mut buffer, voices, output_gain, mixing_mode, .. } = self;
let channel_count = buffer.len();
match mixing_mode {
MixingMode::Summing => voices.write().unwrap().retain_mut(|voice|{
mix_summing(buffer.as_mut_slice(), *output_gain, frames, ||voice.next())
}),
MixingMode::Average => voices.write().unwrap().retain_mut(|voice|{
mix_average(buffer.as_mut_slice(), *output_gain, frames, ||voice.next())
}),
}
}
/// Write output buffer to output ports.
fn write_output_buffer (&mut self, scope: &ProcessScope) {
let Sampler { ref mut audio_outs, buffer, .. } = self;
for (i, port) in audio_outs.iter_mut().enumerate() {
let buffer = &buffer[i];
for (i, value) in port.port_mut().as_mut_slice(scope).iter_mut().enumerate() {
*value = *buffer.get(i).unwrap_or(&0.0);
}
}
}
}
impl Iterator for Voice {
type Item = [f32;2];
fn next (&mut self) -> Option<Self::Item> {
if self.after > 0 {
self.after -= 1;
return Some([0.0, 0.0])
}
let sample = self.sample.read().unwrap();
if self.position < sample.end {
let position = self.position;
self.position += 1;
return sample.channels[0].get(position).map(|_amplitude|[
sample.channels[0][position] * self.velocity * sample.gain,
sample.channels[0][position] * self.velocity * sample.gain,
])
}
None
}
}