tek/src/model.rs

406 lines
14 KiB
Rust

//! Application state.
use crate::{core::*, devices::{arranger::*, sequencer::*, transport::*}};
use once_cell::sync::Lazy;
/// Global modal dialog
pub static MODAL: Lazy<Arc<Mutex<Option<Box<dyn Exit>>>>> =
Lazy::new(||Arc::new(Mutex::new(None)));
/// Root of application state.
pub struct App {
/// Whether the currently focused section has input priority
pub entered: bool,
/// Currently focused section
pub section: AppFocus,
/// Transport model and view.
pub transport: TransportToolbar,
/// Arranger model and view.
pub arranger: Arranger,
/// Phrase editor
pub sequencer: Sequencer,
/// Main JACK client.
pub jack: Option<JackClient>,
/// Map of external MIDI outs in the jack graph
/// to internal MIDI ins of this app.
pub midi_in: Option<Arc<Port<MidiIn>>>,
/// Names of ports to connect to main MIDI IN.
pub midi_ins: Vec<String>,
/// Display mode of chain section
pub chain_mode: bool,
/// Paths to user directories
_xdg: Option<Arc<XdgApp>>,
/// Main audio outputs.
pub audio_outs: Vec<Arc<Port<Unowned>>>,
/// Number of frames requested by process callback
chunk_size: usize,
}
impl App {
pub fn new () -> Usually<Self> {
let xdg = Arc::new(microxdg::XdgApp::new("tek")?);
let first_run = crate::config::AppPaths::new(&xdg)?.should_create();
let jack = JackClient::Inactive(Client::new("tek", ClientOptions::NO_START_SERVER)?.0);
*MODAL.lock().unwrap() = first_run.then(||{
Exit::boxed(crate::devices::setup::SetupModal(Some(xdg.clone()), false))
});
Ok(Self {
entered: true,
section: AppFocus::default(),
transport: TransportToolbar::new(Some(jack.transport())),
arranger: Arranger::new(),
sequencer: Sequencer::new(),
jack: Some(jack),
audio_outs: vec![],
chain_mode: false,
chunk_size: 0,
midi_in: None,
midi_ins: vec![],
_xdg: Some(xdg),
})
}
}
process!(App |self, _client, scope| {
let (
reset, current_frames, chunk_size, current_usecs, next_usecs, period_usecs
) = self.transport.update(&scope);
self.chunk_size = chunk_size;
for track in self.arranger.tracks.iter_mut() {
track.process(
self.midi_in.as_ref().map(|p|p.iter(&scope)),
&self.transport.timebase,
self.transport.playing,
self.transport.started,
self.transport.quant as usize,
reset,
&scope,
(current_frames as usize, self.chunk_size),
(current_usecs as usize, next_usecs.saturating_sub(current_usecs) as usize),
period_usecs as f64
);
}
Control::Continue
});
impl App {
pub fn client (&self) -> &Client {
self.jack.as_ref().unwrap().client()
}
pub fn audio_out (&self, index: usize) -> Option<Arc<Port<Unowned>>> {
self.audio_outs.get(index).map(|x|x.clone())
}
pub fn with_midi_ins (mut self, names: &[&str]) -> Usually<Self> {
self.midi_ins = names.iter().map(|x|x.to_string()).collect();
Ok(self)
}
pub fn with_audio_outs (mut self, names: &[&str]) -> Usually<Self> {
let client = self.client();
self.audio_outs = names
.iter()
.map(|name|client
.ports(Some(name), None, PortFlags::empty())
.get(0)
.map(|name|client.port_by_name(name)))
.flatten()
.filter_map(|x|x)
.map(Arc::new)
.collect();
Ok(self)
}
pub fn activate (
mut self, init: Option<impl FnOnce(&Arc<RwLock<Self>>)->Usually<()>>
) -> Usually<Arc<RwLock<Self>>> {
let jack = self.jack.take().expect("no jack client");
let app = Arc::new(RwLock::new(self));
app.write().unwrap().jack = Some(jack.activate(&app.clone(), |state, client, scope|{
state.write().unwrap().process(client, scope)
})?);
if let Some(init) = init {
init(&app)?;
}
Ok(app)
}
}
/// Different sections of the UI that may be focused.
#[derive(PartialEq, Clone, Copy)]
pub enum AppFocus {
/// The transport is selected.
Transport,
/// The arranger is selected.
Arranger,
/// The sequencer is selected.
Sequencer,
/// The device chain is selected.
Chain,
}
impl Default for AppFocus {
fn default () -> Self { Self::Arranger }
}
impl AppFocus {
pub fn prev (&mut self) {
*self = match self {
Self::Transport => Self::Chain,
Self::Arranger => Self::Transport,
Self::Sequencer => Self::Arranger,
Self::Chain => Self::Sequencer,
}
}
pub fn next (&mut self) {
*self = match self {
Self::Transport => Self::Arranger,
Self::Arranger => Self::Sequencer,
Self::Sequencer => Self::Chain,
Self::Chain => Self::Transport,
}
}
}
/// A sequencer track.
#[derive(Debug)]
pub struct Track {
pub name: String,
/// Play input through output.
pub monitoring: bool,
/// Write input to sequence.
pub recording: bool,
/// Overdub input to sequence.
pub overdub: bool,
/// Map: tick -> MIDI events at tick
pub phrases: Vec<Arc<RwLock<Phrase>>>,
/// Phrase selector
pub sequence: Option<usize>,
/// Output from current sequence.
pub midi_out: Option<Port<MidiOut>>,
/// MIDI output buffer
midi_out_buf: Vec<Vec<Vec<u8>>>,
/// Device chain
pub devices: Vec<JackDevice>,
/// Device selector
pub device: usize,
/// Send all notes off
pub reset: bool, // TODO?: after Some(nframes)
/// Highlight keys on piano roll.
pub notes_in: [bool;128],
/// Highlight keys on piano roll.
pub notes_out: [bool;128],
}
impl Track {
pub fn new (name: &str) -> Usually<Self> {
Ok(Self {
name: name.to_string(),
midi_out: None,
midi_out_buf: vec![Vec::with_capacity(16);16384],
notes_in: [false;128],
notes_out: [false;128],
monitoring: false,
recording: false,
overdub: true,
sequence: None,
phrases: vec![],
devices: vec![],
device: 0,
reset: true,
})
}
fn get_device_mut (&self, i: usize) -> Option<RwLockWriteGuard<Box<dyn Device>>> {
self.devices.get(i).map(|d|d.state.write().unwrap())
}
pub fn device_mut (&self) -> Option<RwLockWriteGuard<Box<dyn Device>>> {
self.get_device_mut(self.device)
}
pub fn connect_first_device (&self) -> Usually<()> {
if let (Some(port), Some(device)) = (&self.midi_out, self.devices.get(0)) {
device.client.as_client().connect_ports(&port, &device.midi_ins()?[0])?;
}
Ok(())
}
pub fn connect_last_device (&self, app: &App) -> Usually<()> {
Ok(match self.devices.get(self.devices.len().saturating_sub(1)) {
Some(device) => {
app.audio_out(0).map(|left|device.connect_audio_out(0, &left)).transpose()?;
app.audio_out(1).map(|right|device.connect_audio_out(1, &right)).transpose()?;
()
},
None => ()
})
}
pub fn add_device (&mut self, device: JackDevice) -> Usually<&mut JackDevice> {
self.devices.push(device);
let index = self.devices.len() - 1;
Ok(&mut self.devices[index])
}
pub fn toggle_monitor (&mut self) {
self.monitoring = !self.monitoring;
}
pub fn toggle_record (&mut self) {
self.recording = !self.recording;
}
pub fn toggle_overdub (&mut self) {
self.overdub = !self.overdub;
}
pub fn process (
&mut self,
input: Option<MidiIter>,
timebase: &Arc<Timebase>,
playing: Option<TransportState>,
started: Option<(usize, usize)>,
quant: usize,
reset: bool,
scope: &ProcessScope,
(frame0, frames): (usize, usize),
(_usec0, _usecs): (usize, usize),
period: f64,
) {
if self.midi_out.is_some() {
// Clear the section of the output buffer that we will be using
for frame in &mut self.midi_out_buf[0..frames] {
frame.clear();
}
// Emit "all notes off" at start of buffer if requested
if self.reset {
all_notes_off(&mut self.midi_out_buf);
self.reset = false;
} else if reset {
all_notes_off(&mut self.midi_out_buf);
}
}
if let (
Some(TransportState::Rolling), Some((start_frame, _)), Some(phrase)
) = (
playing, started, self.sequence.and_then(|id|self.phrases.get_mut(id))
) {
phrase.read().map(|phrase|{
if self.midi_out.is_some() {
phrase.process_out(
&mut self.midi_out_buf,
&mut self.notes_out,
timebase,
(frame0.saturating_sub(start_frame), frames, period)
);
}
}).unwrap();
let mut phrase = phrase.write().unwrap();
let length = phrase.length;
// Monitor and record input
if input.is_some() && (self.recording || self.monitoring) {
// For highlighting keys and note repeat
for (frame, event, bytes) in parse_midi_input(input.unwrap()) {
match event {
LiveEvent::Midi { message, .. } => {
if self.monitoring {
self.midi_out_buf[frame].push(bytes.to_vec())
}
if self.recording {
phrase.record_event({
let pulse = timebase.frame_to_pulse(
(frame0 + frame - start_frame) as f64
);
let quantized = (
pulse / quant as f64
).round() as usize * quant;
let looped = quantized % length;
looped
}, message);
}
match message {
MidiMessage::NoteOn { key, .. } => {
self.notes_in[key.as_int() as usize] = true;
}
MidiMessage::NoteOff { key, .. } => {
self.notes_in[key.as_int() as usize] = false;
},
_ => {}
}
},
_ => {}
}
}
}
} else if input.is_some() && self.midi_out.is_some() && self.monitoring {
for (frame, event, bytes) in parse_midi_input(input.unwrap()) {
self.process_monitor_event(frame, &event, bytes)
}
}
if let Some(out) = &mut self.midi_out {
write_midi_output(&mut out.writer(scope), &self.midi_out_buf, frames);
}
}
#[inline]
fn process_monitor_event (&mut self, frame: usize, event: &LiveEvent, bytes: &[u8]) {
match event {
LiveEvent::Midi { message, .. } => {
self.write_to_output_buffer(frame, bytes);
self.process_monitor_message(&message);
},
_ => {}
}
}
#[inline] fn write_to_output_buffer (&mut self, frame: usize, bytes: &[u8]) {
self.midi_out_buf[frame].push(bytes.to_vec());
}
#[inline]
fn process_monitor_message (&mut self, message: &MidiMessage) {
match message {
MidiMessage::NoteOn { key, .. } => {
self.notes_in[key.as_int() as usize] = true;
}
MidiMessage::NoteOff { key, .. } => {
self.notes_in[key.as_int() as usize] = false;
},
_ => {}
}
}
}
/// Define a MIDI phrase.
#[macro_export] macro_rules! phrase {
($($t:expr => $msg:expr),* $(,)?) => {{
#[allow(unused_mut)]
let mut phrase = BTreeMap::new();
$(phrase.insert($t, vec![]);)*
$(phrase.get_mut(&$t).unwrap().push($msg);)*
phrase
}}
}
macro_rules! impl_axis_common { ($A:ident $T:ty) => {
impl $A<$T> {
pub fn start_inc (&mut self) -> $T {
self.start = self.start + 1;
self.start
}
pub fn start_dec (&mut self) -> $T {
self.start = self.start.saturating_sub(1);
self.start
}
pub fn point_inc (&mut self) -> Option<$T> {
self.point = self.point.map(|p|p + 1);
self.point
}
pub fn point_dec (&mut self) -> Option<$T> {
self.point = self.point.map(|p|p.saturating_sub(1));
self.point
}
}
} }
pub struct FixedAxis<T> { pub start: T, pub point: Option<T> }
impl_axis_common!(FixedAxis u16);
impl_axis_common!(FixedAxis usize);
pub struct ScaledAxis<T> { pub start: T, pub scale: T, pub point: Option<T> }
impl_axis_common!(ScaledAxis u16);
impl_axis_common!(ScaledAxis usize);
impl<T: Copy> ScaledAxis<T> {
pub fn scale_mut (&mut self, cb: &impl Fn(T)->T) {
self.scale = cb(self.scale)
}
}