tek/crates/tek_api/src/api_player.rs

397 lines
16 KiB
Rust

use crate::*;
pub trait HasPlayer: JackApi {
fn player (&self) -> &impl MidiPlayerApi;
fn player_mut (&mut self) -> &mut impl MidiPlayerApi;
}
pub trait MidiPlayerApi: MidiInputApi + MidiOutputApi + Send + Sync {}
pub trait HasPhrase: HasClock {
fn reset (&self) -> bool;
fn reset_mut (&mut self) -> &mut bool;
fn play_phrase (&self)
-> &Option<(Instant, Option<Arc<RwLock<Phrase>>>)>;
fn play_phrase_mut (&mut self)
-> &mut Option<(Instant, Option<Arc<RwLock<Phrase>>>)>;
fn next_phrase (&self)
-> &Option<(Instant, Option<Arc<RwLock<Phrase>>>)>;
fn next_phrase_mut (&mut self)
-> &mut Option<(Instant, Option<Arc<RwLock<Phrase>>>)>;
fn enqueue_next (&mut self, phrase: Option<&Arc<RwLock<Phrase>>>) {
let start = self.clock().next_launch_pulse() as f64;
let instant = Instant::from_pulse(&self.clock().timebase(), start);
let phrase = phrase.map(|p|p.clone());
*self.next_phrase_mut() = Some((instant, phrase));
*self.reset_mut() = true;
}
fn pulses_since_start (&self) -> Option<f64> {
if let Some((started, Some(_))) = self.play_phrase().as_ref() {
Some(self.clock().current.pulse.get() - started.pulse.get())
} else {
None
}
}
}
pub trait MidiInputApi: HasPhrase {
fn midi_ins (&self) -> &Vec<Port<MidiIn>>;
fn midi_ins_mut (&mut self) -> &mut Vec<Port<MidiIn>>;
fn has_midi_ins (&self) -> bool {
self.midi_ins().len() > 0
}
fn recording (&self) -> bool;
fn recording_mut (&mut self) -> &mut bool;
fn toggle_record (&mut self) {
*self.recording_mut() = !self.recording();
}
fn monitoring (&self) -> bool;
fn monitoring_mut (&mut self) -> &mut bool;
fn toggle_monitor (&mut self) {
*self.monitoring_mut() = !self.monitoring();
}
fn overdub (&self) -> bool;
fn overdub_mut (&mut self) -> &mut bool;
fn toggle_overdub (&mut self) {
*self.overdub_mut() = !self.overdub();
}
fn notes_in (&self) -> &Arc<RwLock<[bool;128]>>;
fn record (
&mut self,
scope: &ProcessScope,
midi_buf: &mut Vec<Vec<Vec<u8>>>,
) {
let sample0 = scope.last_frame_time() as usize;
// For highlighting keys and note repeat
let notes_in = self.notes_in().clone();
if self.clock().is_rolling() {
if let Some((started, ref phrase)) = self.play_phrase().clone() {
let start = started.sample.get() as usize;
let quant = self.clock().quant.get();
let timebase = self.clock().timebase().clone();
let monitoring = self.monitoring();
let recording = self.recording();
for input in self.midi_ins_mut().iter() {
for (sample, event, bytes) in parse_midi_input(input.iter(scope)) {
if let LiveEvent::Midi { message, .. } = event {
if monitoring {
midi_buf[sample].push(bytes.to_vec())
}
if recording {
if let Some(phrase) = phrase {
let mut phrase = phrase.write().unwrap();
let length = phrase.length;
phrase.record_event({
let sample = (sample0 + sample - start) as f64;
let pulse = timebase.samples_to_pulse(sample);
let quantized = (pulse / quant).round() * quant;
let looped = quantized as usize % length;
looped
}, message);
}
}
update_keys(&mut*notes_in.write().unwrap(), &message);
}
}
}
}
if let Some((start_at, phrase)) = &self.next_phrase() {
// TODO switch to next phrase and record into it
}
}
}
fn monitor (
&mut self,
scope: &ProcessScope,
midi_buf: &mut Vec<Vec<Vec<u8>>>,
) {
// For highlighting keys and note repeat
let notes_in = self.notes_in().clone();
for input in self.midi_ins_mut().iter() {
for (sample, event, bytes) in parse_midi_input(input.iter(scope)) {
if let LiveEvent::Midi { message, .. } = event {
midi_buf[sample].push(bytes.to_vec());
update_keys(&mut*notes_in.write().unwrap(), &message);
}
}
}
}
}
pub trait MidiOutputApi: HasPhrase {
fn midi_outs (&self) -> &Vec<Port<MidiOut>>;
fn midi_outs_mut (&mut self) -> &mut Vec<Port<MidiOut>>;
fn midi_note (&mut self) -> &mut Vec<u8>;
fn notes_out (&self) -> &Arc<RwLock<[bool;128]>>;
fn has_midi_outs (&self) -> bool {
self.midi_outs().len() > 0
}
/// Clear the section of the output buffer that we will be using,
/// emitting "all notes off" at start of buffer if requested.
fn clear (
&mut self,
scope: &ProcessScope,
midi_buf: &mut Vec<Vec<Vec<u8>>>,
reset: bool
) {
for frame in &mut midi_buf[0..scope.n_frames() as usize] {
frame.clear();
}
if reset {
all_notes_off(midi_buf);
}
}
fn play (
&mut self,
scope: &ProcessScope,
note_buffer: &mut Vec<u8>,
output_buffer: &mut Vec<Vec<Vec<u8>>>
) -> bool {
let mut next = false;
// Write MIDI events from currently playing phrase (if any) to MIDI output buffer
if self.clock().is_rolling() {
let sample0 = scope.last_frame_time() as usize;
let samples = scope.n_frames() as usize;
// If no phrase is playing, prepare for switchover immediately
next = self.play_phrase().is_none();
let phrase = self.play_phrase();
let started0 = &self.clock().started;
let timebase = self.clock().timebase();
let notes_out = self.notes_out();
let next_phrase = self.next_phrase();
if let Some((started, phrase)) = phrase {
// First sample to populate. Greater than 0 means that the first
// pulse of the phrase falls somewhere in the middle of the chunk.
let sample = started.sample.get() as usize;
let sample = sample + started0.read().unwrap().unwrap().0;
let sample = sample0.saturating_sub(sample);
// Iterator that emits sample (index into output buffer at which to write MIDI event)
// paired with pulse (index into phrase from which to take the MIDI event) for each
// sample of the output buffer that corresponds to a MIDI pulse.
let pulses = timebase.pulses_between_samples(sample, sample + samples);
// Notes active during current chunk.
let notes = &mut notes_out.write().unwrap();
for (sample, pulse) in pulses {
// If a next phrase is enqueued, and we're past the end of the current one,
// break the loop here (FIXME count pulse correctly)
next = next_phrase.is_some() && if let Some(ref phrase) = phrase {
pulse >= phrase.read().unwrap().length
} else {
true
};
if next {
break
}
// If there's a currently playing phrase, output notes from it to buffer:
if let Some(ref phrase) = phrase {
// Source phrase from which the MIDI events will be taken.
let phrase = phrase.read().unwrap();
// Phrase with zero length is not processed
if phrase.length > 0 {
// Current pulse index in source phrase
let pulse = pulse % phrase.length;
// Output each MIDI event from phrase at appropriate frames of output buffer:
for message in phrase.notes[pulse].iter() {
// Clear output buffer for this MIDI event.
note_buffer.clear();
// TODO: support MIDI channels other than CH1.
let channel = 0.into();
// Serialize MIDI event into message buffer.
LiveEvent::Midi { channel, message: *message }
.write(note_buffer)
.unwrap();
// Append serialized message to output buffer.
output_buffer[sample].push(note_buffer.clone());
// Update the list of currently held notes.
update_keys(&mut*notes, &message);
}
}
}
}
}
}
next
}
fn switchover (
&mut self,
scope: &ProcessScope,
note_buffer: &mut Vec<u8>,
output_buffer: &mut Vec<Vec<Vec<u8>>>
) {
if self.clock().is_rolling() {
let sample0 = scope.last_frame_time() as usize;
//let samples = scope.n_frames() as usize;
if let Some((start_at, phrase)) = &self.next_phrase() {
let start = start_at.sample.get() as usize;
let sample = self.clock().started.read().unwrap().unwrap().0;
// If it's time to switch to the next phrase:
if start <= sample0.saturating_sub(sample) {
// Samples elapsed since phrase was supposed to start
let skipped = sample0 - start;
// Switch over to enqueued phrase
let started = Instant::from_sample(&self.clock().timebase(), start as f64);
*self.play_phrase_mut() = Some((started, phrase.clone()));
// Unset enqueuement (TODO: where to implement looping?)
*self.next_phrase_mut() = None
}
// TODO fill in remaining ticks of chunk from next phrase.
// ?? just call self.play(scope) again, since enqueuement is off ???
self.play(scope, note_buffer, output_buffer);
// ?? or must it be with modified scope ??
// likely not because start time etc
}
}
}
fn write (&mut self, scope: &ProcessScope, output_buffer: &Vec<Vec<Vec<u8>>>) {
let samples = scope.n_frames() as usize;
for port in self.midi_outs_mut().iter_mut() {
let writer = &mut port.writer(scope);
for time in 0..samples {
for event in output_buffer[time].iter() {
writer.write(&RawMidi { time: time as u32, bytes: &event })
.expect(&format!("{event:?}"));
}
}
}
}
}
/// Add "all notes off" to the start of a buffer.
pub fn all_notes_off (output: &mut [Vec<Vec<u8>>]) {
let mut buf = vec![];
let msg = MidiMessage::Controller { controller: 123.into(), value: 0.into() };
let evt = LiveEvent::Midi { channel: 0.into(), message: msg };
evt.write(&mut buf).unwrap();
output[0].push(buf);
}
/// Return boxed iterator of MIDI events
pub fn parse_midi_input (input: MidiIter) -> Box<dyn Iterator<Item=(usize, LiveEvent, &[u8])> + '_> {
Box::new(input.map(|RawMidi { time, bytes }|(
time as usize,
LiveEvent::parse(bytes).unwrap(),
bytes
)))
}
/// Update notes_in array
pub fn update_keys (keys: &mut[bool;128], message: &MidiMessage) {
match message {
MidiMessage::NoteOn { key, .. } => { keys[key.as_int() as usize] = true; }
MidiMessage::NoteOff { key, .. } => { keys[key.as_int() as usize] = false; },
_ => {}
}
}
/// Hosts the JACK callback for a single MIDI player
pub struct PlayerAudio<'a, T: MidiPlayerApi>(
/// Player
pub &'a mut T,
/// Note buffer
pub &'a mut Vec<u8>,
/// Note chunk buffer
pub &'a mut Vec<Vec<Vec<u8>>>,
);
/// JACK process callback for a sequencer's phrase player/recorder.
impl<'a, T: MidiPlayerApi> Audio for PlayerAudio<'a, T> {
fn process (&mut self, _: &Client, scope: &ProcessScope) -> Control {
let model = &mut self.0;
let note_buf = &mut self.1;
let midi_buf = &mut self.2;
// Clear output buffer(s)
model.clear(scope, midi_buf, false);
// Write chunk of phrase to output, handle switchover
if model.play(scope, note_buf, midi_buf) {
model.switchover(scope, note_buf, midi_buf);
}
if model.has_midi_ins() {
if model.recording() || model.monitoring() {
// Record and/or monitor input
model.record(scope, midi_buf)
} else if model.has_midi_outs() && model.monitoring() {
// Monitor input to output
model.monitor(scope, midi_buf)
}
}
// Write to output port(s)
model.write(scope, midi_buf);
Control::Continue
}
}
//#[derive(Debug)]
//pub struct MIDIPlayer {
///// Global timebase
//pub clock: Arc<Clock>,
///// Start time and phrase being played
//pub play_phrase: Option<(Instant, Option<Arc<RwLock<Phrase>>>)>,
///// Start time and next phrase
//pub next_phrase: Option<(Instant, Option<Arc<RwLock<Phrase>>>)>,
///// Play input through output.
//pub monitoring: bool,
///// Write input to sequence.
//pub recording: bool,
///// Overdub input to sequence.
//pub overdub: bool,
///// Send all notes off
//pub reset: bool, // TODO?: after Some(nframes)
///// Record from MIDI ports to current sequence.
//pub midi_inputs: Vec<Port<MidiIn>>,
///// Play from current sequence to MIDI ports
//pub midi_outputs: Vec<Port<MidiOut>>,
///// MIDI output buffer
//pub midi_note: Vec<u8>,
///// MIDI output buffer
//pub midi_chunk: Vec<Vec<Vec<u8>>>,
///// Notes currently held at input
//pub notes_in: Arc<RwLock<[bool; 128]>>,
///// Notes currently held at output
//pub notes_out: Arc<RwLock<[bool; 128]>>,
//}
///// Methods used primarily by the process callback
//impl MIDIPlayer {
//pub fn new (
//jack: &Arc<RwLock<JackClient>>,
//clock: &Arc<Clock>,
//name: &str
//) -> Usually<Self> {
//let jack = jack.read().unwrap();
//Ok(Self {
//clock: clock.clone(),
//phrase: None,
//next_phrase: None,
//notes_in: Arc::new(RwLock::new([false;128])),
//notes_out: Arc::new(RwLock::new([false;128])),
//monitoring: false,
//recording: false,
//overdub: true,
//reset: true,
//midi_note: Vec::with_capacity(8),
//midi_chunk: vec![Vec::with_capacity(16);16384],
//midi_outputs: vec![
//jack.client().register_port(format!("{name}_out0").as_str(), MidiOut::default())?
//],
//midi_inputs: vec![
//jack.client().register_port(format!("{name}_in0").as_str(), MidiIn::default())?
//],
//})
//}
//}