tek/src/core/time.rs

152 lines
4.3 KiB
Rust

use crate::core::*;
use atomic_float::AtomicF64;
#[derive(Debug)]
/// Keeps track of global time units.
pub struct Timebase {
/// Frames per second
pub rate: AtomicF64,
/// Beats per minute
pub bpm: AtomicF64,
/// Ticks per beat
pub ppq: AtomicF64,
}
impl Default for Timebase {
fn default () -> Self {
Self {
rate: 48000f64.into(),
bpm: 150f64.into(),
ppq: 96f64.into(),
}
}
}
impl Timebase {
pub fn new (rate: f64, bpm: f64, ppq: f64) -> Self {
Self { rate: rate.into(), bpm: bpm.into(), ppq: ppq.into() }
}
/// Frames per second
#[inline] fn rate (&self) -> f64 {
self.rate.load(Ordering::Relaxed)
}
#[inline] fn usec_per_frame (&self) -> f64 {
1_000_000 as f64 / self.rate() as f64
}
#[inline] pub fn frame_to_usec (&self, frame: f64) -> f64 {
frame * self.usec_per_frame()
}
/// Beats per minute
#[inline] pub fn bpm (&self) -> f64 {
self.bpm.load(Ordering::Relaxed)
}
#[inline] pub fn set_bpm (&self, bpm: f64) {
self.bpm.store(bpm, Ordering::Relaxed)
}
#[inline] fn usec_per_beat (&self) -> f64 {
60_000_000f64 / self.bpm() as f64
}
#[inline] fn beat_per_second (&self) -> f64 {
self.bpm() as f64 / 60000000.0
}
/// Pulses per beat
#[inline] pub fn ppq (&self) -> f64 {
self.ppq.load(Ordering::Relaxed)
}
#[inline] pub fn pulse_per_frame (&self) -> f64 {
self.usec_per_pulse() / self.usec_per_frame() as f64
}
#[inline] pub fn usec_per_pulse (&self) -> f64 {
self.usec_per_beat() / self.ppq() as f64
}
#[inline] pub fn pulse_to_frame (&self, pulses: f64) -> f64 {
self.pulse_per_frame() * pulses
}
#[inline] pub fn frame_to_pulse (&self, frames: f64) -> f64 {
frames / self.pulse_per_frame()
}
#[inline] pub fn note_to_usec (&self, (num, den): (f64, f64)) -> f64 {
4.0 * self.usec_per_beat() * num / den
}
#[inline] pub fn frames_per_pulse (&self) -> f64 {
self.rate() as f64 / self.pulses_per_second()
}
#[inline] fn pulses_per_second (&self) -> f64 {
self.beat_per_second() * self.ppq() as f64
}
#[inline] pub fn note_to_frame (&self, note: (f64, f64)) -> f64 {
self.usec_to_frame(self.note_to_usec(note))
}
#[inline] fn usec_to_frame (&self, usec: f64) -> f64 {
usec * self.rate() / 1000.0
}
#[inline] pub fn quantize (
&self, step: (f64, f64), time: f64
) -> (f64, f64) {
let step = self.note_to_usec(step);
(time / step, time % step)
}
#[inline] pub fn quantize_into <E, T> (
&self, step: (f64, f64), events: E
) -> Vec<(f64, T)>
where E: std::iter::Iterator<Item=(f64, T)> + Sized
{
let step = (step.0.into(), step.1.into());
events
.map(|(time, event)|(self.quantize(step, time).0, event))
.collect()
}
}
/// Defines frames per tick.
pub struct Ticks(pub f64);
impl Ticks {
/// Iterate over ticks between start and end.
pub fn between_frames (&self, start: usize, end: usize) -> TicksIterator {
TicksIterator(self.0, start, start, end)
}
}
/// Iterator that emits subsequent ticks within a range.
pub struct TicksIterator(f64, usize, usize, usize);
impl Iterator for TicksIterator {
type Item = (usize, usize);
fn next (&mut self) -> Option<Self::Item> {
loop {
if self.1 > self.3 {
return None
}
let fpt = self.0;
let frame = self.1 as f64;
let start = self.2;
let end = self.3;
self.1 = self.1 + 1;
//println!("{fpt} {frame} {start} {end}");
let jitter = frame.rem_euclid(fpt); // ramps
let next_jitter = (frame + 1.0).rem_euclid(fpt);
if jitter > next_jitter { // at crossing:
let time = (frame as usize) % (end as usize-start as usize);
let tick = (frame / fpt) as usize;
return Some((time, tick))
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_frames_to_ticks () {
let ticks = Ticks(12.3).between_frames(0, 100).collect::<Vec<_>>();
println!("{ticks:?}");
}
}