use crate::*; impl Gettable for AtomicBool { fn get (&self) -> bool { self.load(Relaxed) } } impl InteriorMutable for AtomicBool { fn set (&self, value: bool) -> bool { self.swap(value, Relaxed) } } impl Gettable for AtomicUsize { fn get (&self) -> usize { self.load(Relaxed) } } impl InteriorMutable for AtomicUsize { fn set (&self, value: usize) -> usize { self.swap(value, Relaxed) } } //impl>> MaybeHas for U { //fn get (&self) -> Option<&T> { //Has::>::get(self).as_ref() //} //} impl Default for MidiCursor { fn default () -> Self { Self { time_pos: Arc::new(0.into()), note_pos: Arc::new(36.into()), note_len: Arc::new(24.into()), } } } impl NotePoint for MidiCursor { fn note_len (&self) -> &AtomicUsize { &self.note_len } fn note_pos (&self) -> &AtomicUsize { &self.note_pos } } impl TimePoint for MidiCursor { fn time_pos (&self) -> &AtomicUsize { self.time_pos.as_ref() } } impl MidiPoint for T {} from!(MidiSelection: |data:(usize, bool)| Self { time_len: Arc::new(0.into()), note_axis: Arc::new(0.into()), note_lo: Arc::new(0.into()), time_axis: Arc::new(0.into()), time_start: Arc::new(0.into()), time_zoom: Arc::new(data.0.into()), time_lock: Arc::new(data.1.into()), }); impl MidiRange for T {} impl TimeRange for MidiSelection { fn time_len (&self) -> &AtomicUsize { &self.time_len } fn time_zoom (&self) -> &AtomicUsize { &self.time_zoom } fn time_lock (&self) -> &AtomicBool { &self.time_lock } fn time_start (&self) -> &AtomicUsize { &self.time_start } fn time_axis (&self) -> &AtomicUsize { &self.time_axis } } impl NoteRange for MidiSelection { fn note_lo (&self) -> &AtomicUsize { &self.note_lo } fn note_axis (&self) -> &AtomicUsize { &self.note_axis } } impl Moment { pub fn zero (timebase: &Arc) -> Self { Self { usec: 0.into(), sample: 0.into(), pulse: 0.into(), timebase: timebase.clone() } } pub fn from_usec (timebase: &Arc, usec: f64) -> Self { Self { usec: usec.into(), sample: timebase.sr.usecs_to_sample(usec).into(), pulse: timebase.usecs_to_pulse(usec).into(), timebase: timebase.clone(), } } pub fn from_sample (timebase: &Arc, sample: f64) -> Self { Self { sample: sample.into(), usec: timebase.sr.samples_to_usec(sample).into(), pulse: timebase.samples_to_pulse(sample).into(), timebase: timebase.clone(), } } pub fn from_pulse (timebase: &Arc, pulse: f64) -> Self { Self { pulse: pulse.into(), sample: timebase.pulses_to_sample(pulse).into(), usec: timebase.pulses_to_usec(pulse).into(), timebase: timebase.clone(), } } #[inline] pub fn update_from_usec (&self, usec: f64) { self.usec.set(usec); self.pulse.set(self.timebase.usecs_to_pulse(usec)); self.sample.set(self.timebase.sr.usecs_to_sample(usec)); } #[inline] pub fn update_from_sample (&self, sample: f64) { self.usec.set(self.timebase.sr.samples_to_usec(sample)); self.pulse.set(self.timebase.samples_to_pulse(sample)); self.sample.set(sample); } #[inline] pub fn update_from_pulse (&self, pulse: f64) { self.usec.set(self.timebase.pulses_to_usec(pulse)); self.pulse.set(pulse); self.sample.set(self.timebase.pulses_to_sample(pulse)); } #[inline] pub fn format_beat (&self) -> Arc { self.timebase.format_beats_1(self.pulse.get()).into() } } impl LaunchSync { pub fn next (&self) -> f64 { note_duration_next(self.get() as usize) as f64 } pub fn prev (&self) -> f64 { note_duration_prev(self.get() as usize) as f64 } } impl Quantize { pub fn next (&self) -> f64 { note_duration_next(self.get() as usize) as f64 } pub fn prev (&self) -> f64 { note_duration_prev(self.get() as usize) as f64 } } impl Iterator for TicksIterator { type Item = (usize, usize); fn next (&mut self) -> Option { loop { if self.sample > self.end { return None } let spp = self.spp; let sample = self.sample as f64; let start = self.start; let end = self.end; self.sample += 1; //println!("{spp} {sample} {start} {end}"); let jitter = sample.rem_euclid(spp); // ramps let next_jitter = (sample + 1.0).rem_euclid(spp); if jitter > next_jitter { // at crossing: let time = (sample as usize) % (end as usize-start as usize); let tick = (sample / spp) as usize; return Some((time, tick)) } } } } impl Timebase { /// Specify sample rate, BPM and PPQ pub fn new ( s: impl Into, b: impl Into, p: impl Into ) -> Self { Self { sr: s.into(), bpm: b.into(), ppq: p.into() } } /// Iterate over ticks between start and end. #[inline] pub fn pulses_between_samples (&self, start: usize, end: usize) -> TicksIterator { TicksIterator { spp: self.samples_per_pulse(), sample: start, start, end } } /// Return the duration fo a beat in microseconds #[inline] pub fn usec_per_beat (&self) -> f64 { 60_000_000f64 / self.bpm.get() } /// Return the number of beats in a second #[inline] pub fn beat_per_second (&self) -> f64 { self.bpm.get() / 60f64 } /// Return the number of microseconds corresponding to a note of the given duration #[inline] pub fn note_to_usec (&self, (num, den): (f64, f64)) -> f64 { 4.0 * self.usec_per_beat() * num / den } /// Return duration of a pulse in microseconds (BPM-dependent) #[inline] pub fn pulse_per_usec (&self) -> f64 { self.ppq.get() / self.usec_per_beat() } /// Return duration of a pulse in microseconds (BPM-dependent) #[inline] pub fn usec_per_pulse (&self) -> f64 { self.usec_per_beat() / self.ppq.get() } /// Return number of pulses to which a number of microseconds corresponds (BPM-dependent) #[inline] pub fn usecs_to_pulse (&self, usec: f64) -> f64 { usec * self.pulse_per_usec() } /// Convert a number of pulses to a sample number (SR- and BPM-dependent) #[inline] pub fn pulses_to_usec (&self, pulse: f64) -> f64 { pulse / self.usec_per_pulse() } /// Return number of pulses in a second (BPM-dependent) #[inline] pub fn pulses_per_second (&self) -> f64 { self.beat_per_second() * self.ppq.get() } /// Return fraction of a pulse to which a sample corresponds (SR- and BPM-dependent) #[inline] pub fn pulses_per_sample (&self) -> f64 { self.usec_per_pulse() / self.sr.usec_per_sample() } /// Return number of samples in a pulse (SR- and BPM-dependent) #[inline] pub fn samples_per_pulse (&self) -> f64 { self.sr.get() / self.pulses_per_second() } /// Convert a number of pulses to a sample number (SR- and BPM-dependent) #[inline] pub fn pulses_to_sample (&self, p: f64) -> f64 { self.pulses_per_sample() * p } /// Convert a number of samples to a pulse number (SR- and BPM-dependent) #[inline] pub fn samples_to_pulse (&self, s: f64) -> f64 { s / self.pulses_per_sample() } /// Return the number of samples corresponding to a note of the given duration #[inline] pub fn note_to_samples (&self, note: (f64, f64)) -> f64 { self.usec_to_sample(self.note_to_usec(note)) } /// Return the number of samples corresponding to the given number of microseconds #[inline] pub fn usec_to_sample (&self, usec: f64) -> f64 { usec * self.sr.get() / 1000f64 } /// Return the quantized position of a moment in time given a step #[inline] pub fn quantize (&self, step: (f64, f64), time: f64) -> (f64, f64) { let step = self.note_to_usec(step); (time / step, time % step) } /// Quantize a collection of events #[inline] pub fn quantize_into + Sized, T> ( &self, step: (f64, f64), events: E ) -> Vec<(f64, f64)> { events.map(|(time, event)|(self.quantize(step, time).0, event)).collect() } /// Format a number of pulses into Beat.Bar.Pulse starting from 0 #[inline] pub fn format_beats_0 (&self, pulse: f64) -> Arc { let pulse = pulse as usize; let ppq = self.ppq.get() as usize; let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) }; format!("{}.{}.{pulses:02}", beats / 4, beats % 4).into() } /// Format a number of pulses into Beat.Bar starting from 0 #[inline] pub fn format_beats_0_short (&self, pulse: f64) -> Arc { let pulse = pulse as usize; let ppq = self.ppq.get() as usize; let beats = if ppq > 0 { pulse / ppq } else { 0 }; format!("{}.{}", beats / 4, beats % 4).into() } /// Format a number of pulses into Beat.Bar.Pulse starting from 1 #[inline] pub fn format_beats_1 (&self, pulse: f64) -> Arc { let mut string = String::with_capacity(16); self.format_beats_1_to(&mut string, pulse).expect("failed to format {pulse} into beat"); string.into() } /// Format a number of pulses into Beat.Bar.Pulse starting from 1 #[inline] pub fn format_beats_1_to (&self, w: &mut impl std::fmt::Write, pulse: f64) -> Result<(), std::fmt::Error> { let pulse = pulse as usize; let ppq = self.ppq.get() as usize; let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) }; write!(w, "{}.{}.{pulses:02}", beats / 4 + 1, beats % 4 + 1) } /// Format a number of pulses into Beat.Bar.Pulse starting from 1 #[inline] pub fn format_beats_1_short (&self, pulse: f64) -> Arc { let pulse = pulse as usize; let ppq = self.ppq.get() as usize; let beats = if ppq > 0 { pulse / ppq } else { 0 }; format!("{}.{}", beats / 4 + 1, beats % 4 + 1).into() } } impl Default for Timebase { fn default () -> Self { Self::new(48000f64, 150f64, DEFAULT_PPQ) } } impl SampleRate { /// Return the duration of a sample in microseconds (floating) #[inline] pub fn usec_per_sample (&self) -> f64 { 1_000_000f64 / self.get() } /// Return the duration of a sample in microseconds (floating) #[inline] pub fn sample_per_usec (&self) -> f64 { self.get() / 1_000_000f64 } /// Convert a number of samples to microseconds (floating) #[inline] pub fn samples_to_usec (&self, samples: f64) -> f64 { self.usec_per_sample() * samples } /// Convert a number of microseconds to samples (floating) #[inline] pub fn usecs_to_sample (&self, usecs: f64) -> f64 { self.sample_per_usec() * usecs } } impl Microsecond { #[inline] pub fn format_msu (&self) -> Arc { let usecs = self.get() as usize; let (seconds, msecs) = (usecs / 1000000, usecs / 1000 % 1000); let (minutes, seconds) = (seconds / 60, seconds % 60); format!("{minutes}:{seconds:02}:{msecs:03}").into() } } /// Implement an arithmetic operation for a unit of time #[macro_export] macro_rules! impl_op { ($T:ident, $Op:ident, $method:ident, |$a:ident,$b:ident|{$impl:expr}) => { impl $Op for $T { type Output = Self; #[inline] fn $method (self, other: Self) -> Self::Output { let $a = self.get(); let $b = other.get(); Self($impl.into()) } } impl $Op for $T { type Output = Self; #[inline] fn $method (self, other: usize) -> Self::Output { let $a = self.get(); let $b = other as f64; Self($impl.into()) } } impl $Op for $T { type Output = Self; #[inline] fn $method (self, other: f64) -> Self::Output { let $a = self.get(); let $b = other; Self($impl.into()) } } } } /// Define and implement a unit of time #[macro_export] macro_rules! impl_time_unit { ($T:ident) => { impl Gettable for $T { fn get (&self) -> f64 { self.0.load(Relaxed) } } impl InteriorMutable for $T { fn set (&self, value: f64) -> f64 { let old = self.get(); self.0.store(value, Relaxed); old } } impl TimeUnit for $T {} impl_op!($T, Add, add, |a, b|{a + b}); impl_op!($T, Sub, sub, |a, b|{a - b}); impl_op!($T, Mul, mul, |a, b|{a * b}); impl_op!($T, Div, div, |a, b|{a / b}); impl_op!($T, Rem, rem, |a, b|{a % b}); impl From for $T { fn from (value: f64) -> Self { Self(value.into()) } } impl From for $T { fn from (value: usize) -> Self { Self((value as f64).into()) } } impl From<$T> for f64 { fn from (value: $T) -> Self { value.get() } } impl From<$T> for usize { fn from (value: $T) -> Self { value.get() as usize } } impl From<&$T> for f64 { fn from (value: &$T) -> Self { value.get() } } impl From<&$T> for usize { fn from (value: &$T) -> Self { value.get() as usize } } impl Clone for $T { fn clone (&self) -> Self { Self(self.get().into()) } } } } impl_time_unit!(SampleCount); impl_time_unit!(SampleRate); impl_time_unit!(Microsecond); impl_time_unit!(Quantize); impl_time_unit!(PulsesPerQuaver); impl_time_unit!(Pulse); impl_time_unit!(BeatsPerMinute); impl_time_unit!(LaunchSync);