transport -> clock

This commit is contained in:
🪞👃🪞 2025-01-02 13:04:57 +01:00
parent 7f57465b3a
commit 7a4fa1692b
15 changed files with 37 additions and 36 deletions

149
src/clock/clock_tui.rs Normal file
View file

@ -0,0 +1,149 @@
use crate::*;
use ClockCommand::{Play, Pause, SetBpm, SetQuant, SetSync};
use FocusCommand::{Next, Prev};
use KeyCode::{Enter, Left, Right, Char};
/// Transport clock app.
pub struct TransportTui {
pub jack: Arc<RwLock<JackConnection>>,
pub clock: Clock,
pub size: Measure<Tui>,
pub cursor: (usize, usize),
pub color: ItemPalette,
}
from_jack!(|jack|TransportTui Self {
jack: jack.clone(),
clock: Clock::from(jack),
size: Measure::new(),
cursor: (0, 0),
color: ItemPalette::random(),
});
has_clock!(|self: TransportTui|&self.clock);
audio!(|self: TransportTui, client, scope|ClockAudio(self).process(client, scope));
handle!(<Tui>|self: TransportTui, from|TransportCommand::execute_with_state(self, from));
render!(Tui: (self: TransportTui) => TransportView(&self.clock));
pub struct TransportView<'a>(pub &'a Clock);
render!(Tui: (self: TransportView<'a>) => row!(
BeatStats::new(self.0), " ",
PlayPause(self.0.is_rolling()), " ",
OutputStats::new(self.0),
));
pub struct PlayPause(pub bool);
render!(Tui: (self: PlayPause) => Tui::bg(
if self.0{Color::Rgb(0,128,0)}else{Color::Rgb(128,64,0)},
Fixed::x(5, Tui::either(self.0,
Tui::fg(Color::Rgb(0, 255, 0), Bsp::s(" 🭍🭑🬽 ", " 🭞🭜🭘 ",)),
Tui::fg(Color::Rgb(255, 128, 0), Bsp::s(" ▗▄▖ ", " ▝▀▘ ",))))));
impl std::fmt::Debug for TransportTui {
fn fmt (&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
f.debug_struct("TransportTui")
.field("jack", &self.jack)
.field("size", &self.size)
.field("cursor", &self.cursor)
.finish()
}
}
pub struct BeatStats { bpm: String, beat: String, time: String, }
impl BeatStats {
fn new (clock: &Clock) -> Self {
let (beat, time) = clock.started.read().unwrap().as_ref().map(|started|{
let current_usec = clock.global.usec.get() - started.usec.get();
(
clock.timebase.format_beats_1(clock.timebase.usecs_to_pulse(current_usec)),
format!("{:.3}s", current_usec/1000000.)
)
}).unwrap_or_else(||("-.-.--".to_string(), "-.---s".to_string()));
Self { bpm: format!("{:.3}", clock.timebase.bpm.get()), beat, time }
}
}
render!(Tui: (self: BeatStats) => col!(
Bsp::e(&self.bpm, " BPM"), Bsp::e("Beat ", &self.beat), Bsp::e("Time ", &self.time),
));
pub struct OutputStats { sample_rate: String, buffer_size: String, latency: String, }
impl OutputStats {
fn new (clock: &Clock) -> Self {
let rate = clock.timebase.sr.get();
let chunk = clock.chunk.load(Relaxed);
Self {
sample_rate: format!("{:.1}Hz", rate),
buffer_size: format!("{chunk}"),
latency: format!("{}", chunk as f64 / rate * 1000.),
}
}
}
render!(Tui: (self: OutputStats) => col!(
Bsp::e(format!("{}", self.sample_rate), " sample rate"),
Bsp::e(format!("{}", self.buffer_size), " sample buffer"),
Bsp::e(format!("{:.3}ms", self.latency), " latency"),
));
#[derive(Clone, Debug, PartialEq)]
pub enum TransportCommand {
Clock(ClockCommand),
}
command!(|self:TransportCommand,state:TransportTui|match self {
//Self::Focus(cmd) => cmd.execute(state)?.map(Self::Focus),
Self::Clock(cmd) => cmd.execute(state)?.map(Self::Clock),
_ => unreachable!(),
});
impl InputToCommand<Tui, TransportTui> for TransportCommand {
fn input_to_command (state: &TransportTui, input: &TuiIn) -> Option<Self> {
use TransportCommand::*;
Some(match input.event() {
key_pat!(Char(' ')) => Clock(if state.clock().is_stopped() {
Play(None)
} else {
Pause(None)
}),
key_pat!(Shift-Char(' ')) => Clock(if state.clock().is_stopped() {
Play(Some(0))
} else {
Pause(Some(0))
}),
_ => return None
})
}
}
fn to_bpm_command (input: &TuiIn, bpm: f64) -> Option<TransportCommand> {
use TransportCommand::*;
Some(match input.event() {
key_pat!(Char(',')) => Clock(SetBpm(bpm - 1.0)),
key_pat!(Char('.')) => Clock(SetBpm(bpm + 1.0)),
key_pat!(Char('<')) => Clock(SetBpm(bpm - 0.001)),
key_pat!(Char('>')) => Clock(SetBpm(bpm + 0.001)),
_ => return None,
})
}
fn to_quant_command (input: &TuiIn, quant: &Quantize) -> Option<TransportCommand> {
use TransportCommand::*;
Some(match input.event() {
key_pat!(Char(',')) => Clock(SetQuant(quant.prev())),
key_pat!(Char('.')) => Clock(SetQuant(quant.next())),
key_pat!(Char('<')) => Clock(SetQuant(quant.prev())),
key_pat!(Char('>')) => Clock(SetQuant(quant.next())),
_ => return None,
})
}
fn to_sync_command (input: &TuiIn, sync: &LaunchSync) -> Option<TransportCommand> {
use TransportCommand::*;
Some(match input.event() {
key_pat!(Char(',')) => Clock(SetSync(sync.prev())),
key_pat!(Char('.')) => Clock(SetSync(sync.next())),
key_pat!(Char('<')) => Clock(SetSync(sync.prev())),
key_pat!(Char('>')) => Clock(SetSync(sync.next())),
_ => return None,
})
}
fn to_seek_command (input: &TuiIn) -> Option<TransportCommand> {
use TransportCommand::*;
Some(match input.event() {
key_pat!(Char(',')) => todo!("transport seek bar"),
key_pat!(Char('.')) => todo!("transport seek bar"),
key_pat!(Char('<')) => todo!("transport seek beat"),
key_pat!(Char('>')) => todo!("transport seek beat"),
_ => return None,
})
}

15
src/clock/microsecond.rs Normal file
View file

@ -0,0 +1,15 @@
use crate::*;
/// Timestamp in microseconds
#[derive(Debug, Default)] pub struct Microsecond(AtomicF64);
impl_time_unit!(Microsecond);
impl Microsecond {
#[inline] pub fn format_msu (&self) -> String {
let usecs = self.get() as usize;
let (seconds, msecs) = (usecs / 1000000, usecs / 1000 % 1000);
let (minutes, seconds) = (seconds / 60, seconds % 60);
format!("{minutes}:{seconds:02}:{msecs:03}")
}
}

70
src/clock/moment.rs Normal file
View file

@ -0,0 +1,70 @@
use crate::*;
#[derive(Debug, Clone)]
pub enum Moment2 {
None,
Zero,
Usec(Microsecond),
Sample(SampleCount),
Pulse(Pulse),
}
/// A point in time in all time scales (microsecond, sample, MIDI pulse)
#[derive(Debug, Default, Clone)]
pub struct Moment {
pub timebase: Arc<Timebase>,
/// Current time in microseconds
pub usec: Microsecond,
/// Current time in audio samples
pub sample: SampleCount,
/// Current time in MIDI pulses
pub pulse: Pulse,
}
impl Moment {
pub fn zero (timebase: &Arc<Timebase>) -> Self {
Self { usec: 0.into(), sample: 0.into(), pulse: 0.into(), timebase: timebase.clone() }
}
pub fn from_usec (timebase: &Arc<Timebase>, usec: f64) -> Self {
Self {
usec: usec.into(),
sample: timebase.sr.usecs_to_sample(usec).into(),
pulse: timebase.usecs_to_pulse(usec).into(),
timebase: timebase.clone(),
}
}
pub fn from_sample (timebase: &Arc<Timebase>, sample: f64) -> Self {
Self {
sample: sample.into(),
usec: timebase.sr.samples_to_usec(sample).into(),
pulse: timebase.samples_to_pulse(sample).into(),
timebase: timebase.clone(),
}
}
pub fn from_pulse (timebase: &Arc<Timebase>, pulse: f64) -> Self {
Self {
pulse: pulse.into(),
sample: timebase.pulses_to_sample(pulse).into(),
usec: timebase.pulses_to_usec(pulse).into(),
timebase: timebase.clone(),
}
}
#[inline] pub fn update_from_usec (&self, usec: f64) {
self.usec.set(usec);
self.pulse.set(self.timebase.usecs_to_pulse(usec));
self.sample.set(self.timebase.sr.usecs_to_sample(usec));
}
#[inline] pub fn update_from_sample (&self, sample: f64) {
self.usec.set(self.timebase.sr.samples_to_usec(sample));
self.pulse.set(self.timebase.samples_to_pulse(sample));
self.sample.set(sample);
}
#[inline] pub fn update_from_pulse (&self, pulse: f64) {
self.usec.set(self.timebase.pulses_to_usec(pulse));
self.pulse.set(pulse);
self.sample.set(self.timebase.pulses_to_sample(pulse));
}
#[inline] pub fn format_beat (&self) -> String {
self.timebase.format_beats_1(self.pulse.get())
}
}

58
src/clock/perf.rs Normal file
View file

@ -0,0 +1,58 @@
use crate::*;
/// Performance counter
pub struct PerfModel {
pub enabled: bool,
clock: quanta::Clock,
// In nanoseconds
used: AtomicF64,
// In microseconds
period: AtomicF64,
}
pub trait HasPerf {
fn perf (&self) -> &PerfModel;
}
impl Default for PerfModel {
fn default () -> Self {
Self {
enabled: true,
clock: quanta::Clock::new(),
used: Default::default(),
period: Default::default(),
}
}
}
impl PerfModel {
pub fn get_t0 (&self) -> Option<u64> {
if self.enabled {
Some(self.clock.raw())
} else {
None
}
}
pub fn update (&self, t0: Option<u64>, scope: &ProcessScope) {
if let Some(t0) = t0 {
let t1 = self.clock.raw();
self.used.store(
self.clock.delta_as_nanos(t0, t1) as f64,
Relaxed,
);
self.period.store(
scope.cycle_times().unwrap().period_usecs as f64,
Relaxed,
);
}
}
pub fn percentage (&self) -> Option<f64> {
let period = self.period.load(Relaxed) * 1000.0;
if period > 0.0 {
let used = self.used.load(Relaxed);
Some(100.0 * used / period)
} else {
None
}
}
}

71
src/clock/pulse.rs Normal file
View file

@ -0,0 +1,71 @@
use crate::*;
pub const DEFAULT_PPQ: f64 = 96.0;
/// FIXME: remove this and use PPQ from timebase everywhere:
pub const PPQ: usize = 96;
/// MIDI resolution in PPQ (pulses per quarter note)
#[derive(Debug, Default)] pub struct PulsesPerQuaver(AtomicF64);
impl_time_unit!(PulsesPerQuaver);
/// Timestamp in MIDI pulses
#[derive(Debug, Default)] pub struct Pulse(AtomicF64);
impl_time_unit!(Pulse);
/// Tempo in beats per minute
#[derive(Debug, Default)] pub struct BeatsPerMinute(AtomicF64);
impl_time_unit!(BeatsPerMinute);
/// Quantization setting for launching clips
#[derive(Debug, Default)] pub struct LaunchSync(AtomicF64);
impl_time_unit!(LaunchSync);
impl LaunchSync {
pub fn next (&self) -> f64 {
Note::next(self.get() as usize) as f64
}
pub fn prev (&self) -> f64 {
Note::prev(self.get() as usize) as f64
}
}
/// Quantization setting for notes
#[derive(Debug, Default)] pub struct Quantize(AtomicF64);
impl_time_unit!(Quantize);
impl Quantize {
pub fn next (&self) -> f64 {
Note::next(self.get() as usize) as f64
}
pub fn prev (&self) -> f64 {
Note::prev(self.get() as usize) as f64
}
}
/// Iterator that emits subsequent ticks within a range.
pub struct TicksIterator {
pub spp: f64,
pub sample: usize,
pub start: usize,
pub end: usize,
}
impl Iterator for TicksIterator {
type Item = (usize, usize);
fn next (&mut self) -> Option<Self::Item> {
loop {
if self.sample > self.end { return None }
let spp = self.spp;
let sample = self.sample as f64;
let start = self.start;
let end = self.end;
self.sample += 1;
//println!("{spp} {sample} {start} {end}");
let jitter = sample.rem_euclid(spp); // ramps
let next_jitter = (sample + 1.0).rem_euclid(spp);
if jitter > next_jitter { // at crossing:
let time = (sample as usize) % (end as usize-start as usize);
let tick = (sample / spp) as usize;
return Some((time, tick))
}
}
}
}

View file

@ -0,0 +1,5 @@
use crate::*;
/// Timestamp in audio samples
#[derive(Debug, Default)] pub struct SampleCount(AtomicF64);
impl_time_unit!(SampleCount);

23
src/clock/sample_rate.rs Normal file
View file

@ -0,0 +1,23 @@
use crate::*;
/// Audio sample rate in Hz (samples per second)
#[derive(Debug, Default)] pub struct SampleRate(AtomicF64);
impl_time_unit!(SampleRate);
impl SampleRate {
/// Return the duration of a sample in microseconds (floating)
#[inline] pub fn usec_per_sample (&self) -> f64 {
1_000_000f64 / self.get()
}
/// Return the duration of a sample in microseconds (floating)
#[inline] pub fn sample_per_usec (&self) -> f64 {
self.get() / 1_000_000f64
}
/// Convert a number of samples to microseconds (floating)
#[inline] pub fn samples_to_usec (&self, samples: f64) -> f64 {
self.usec_per_sample() * samples
}
/// Convert a number of microseconds to samples (floating)
#[inline] pub fn usecs_to_sample (&self, usecs: f64) -> f64 {
self.sample_per_usec() * usecs
}
}

112
src/clock/timebase.rs Normal file
View file

@ -0,0 +1,112 @@
use crate::*;
/// Temporal resolutions: sample rate, tempo, MIDI pulses per quaver (beat)
#[derive(Debug, Clone)]
pub struct Timebase {
/// Audio samples per second
pub sr: SampleRate,
/// MIDI beats per minute
pub bpm: BeatsPerMinute,
/// MIDI ticks per beat
pub ppq: PulsesPerQuaver,
}
impl Timebase {
/// Specify sample rate, BPM and PPQ
pub fn new (
s: impl Into<SampleRate>,
b: impl Into<BeatsPerMinute>,
p: impl Into<PulsesPerQuaver>
) -> Self {
Self { sr: s.into(), bpm: b.into(), ppq: p.into() }
}
/// Iterate over ticks between start and end.
#[inline] pub fn pulses_between_samples (&self, start: usize, end: usize) -> TicksIterator {
TicksIterator { spp: self.samples_per_pulse(), sample: start, start, end }
}
/// Return the duration fo a beat in microseconds
#[inline] pub fn usec_per_beat (&self) -> f64 { 60_000_000f64 / self.bpm.get() }
/// Return the number of beats in a second
#[inline] pub fn beat_per_second (&self) -> f64 { self.bpm.get() / 60f64 }
/// Return the number of microseconds corresponding to a note of the given duration
#[inline] pub fn note_to_usec (&self, (num, den): (f64, f64)) -> f64 {
4.0 * self.usec_per_beat() * num / den
}
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn pulse_per_usec (&self) -> f64 { self.ppq.get() / self.usec_per_beat() }
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn usec_per_pulse (&self) -> f64 { self.usec_per_beat() / self.ppq.get() }
/// Return number of pulses to which a number of microseconds corresponds (BPM-dependent)
#[inline] pub fn usecs_to_pulse (&self, usec: f64) -> f64 { usec * self.pulse_per_usec() }
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_usec (&self, pulse: f64) -> f64 { pulse / self.usec_per_pulse() }
/// Return number of pulses in a second (BPM-dependent)
#[inline] pub fn pulses_per_second (&self) -> f64 { self.beat_per_second() * self.ppq.get() }
/// Return fraction of a pulse to which a sample corresponds (SR- and BPM-dependent)
#[inline] pub fn pulses_per_sample (&self) -> f64 {
self.usec_per_pulse() / self.sr.usec_per_sample()
}
/// Return number of samples in a pulse (SR- and BPM-dependent)
#[inline] pub fn samples_per_pulse (&self) -> f64 {
self.sr.get() / self.pulses_per_second()
}
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_sample (&self, p: f64) -> f64 {
self.pulses_per_sample() * p
}
/// Convert a number of samples to a pulse number (SR- and BPM-dependent)
#[inline] pub fn samples_to_pulse (&self, s: f64) -> f64 {
s / self.pulses_per_sample()
}
/// Return the number of samples corresponding to a note of the given duration
#[inline] pub fn note_to_samples (&self, note: (f64, f64)) -> f64 {
self.usec_to_sample(self.note_to_usec(note))
}
/// Return the number of samples corresponding to the given number of microseconds
#[inline] pub fn usec_to_sample (&self, usec: f64) -> f64 {
usec * self.sr.get() / 1000f64
}
/// Return the quantized position of a moment in time given a step
#[inline] pub fn quantize (&self, step: (f64, f64), time: f64) -> (f64, f64) {
let step = self.note_to_usec(step);
(time / step, time % step)
}
/// Quantize a collection of events
#[inline] pub fn quantize_into <E: Iterator<Item=(f64, f64)> + Sized, T> (
&self, step: (f64, f64), events: E
) -> Vec<(f64, f64)> {
events.map(|(time, event)|(self.quantize(step, time).0, event)).collect()
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 0
#[inline] pub fn format_beats_0 (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4, beats % 4)
}
/// Format a number of pulses into Beat.Bar starting from 0
#[inline] pub fn format_beats_0_short (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4, beats % 4)
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1 (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4 + 1, beats % 4 + 1)
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1_short (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4 + 1, beats % 4 + 1)
}
}
impl Default for Timebase {
fn default () -> Self { Self::new(48000f64, 150f64, DEFAULT_PPQ) }
}

59
src/clock/unit.rs Normal file
View file

@ -0,0 +1,59 @@
use crate::*;
/// A unit of time, represented as an atomic 64-bit float.
///
/// According to https://stackoverflow.com/a/873367, as per IEEE754,
/// every integer between 1 and 2^53 can be represented exactly.
/// This should mean that, even at 192kHz sampling rate, over 1 year of audio
/// can be clocked in microseconds with f64 without losing precision.
pub trait TimeUnit: InteriorMutable<f64> {}
/// Implement an arithmetic operation for a unit of time
#[macro_export] macro_rules! impl_op {
($T:ident, $Op:ident, $method:ident, |$a:ident,$b:ident|{$impl:expr}) => {
impl $Op<Self> for $T {
type Output = Self; #[inline] fn $method (self, other: Self) -> Self::Output {
let $a = self.get(); let $b = other.get(); Self($impl.into())
}
}
impl $Op<usize> for $T {
type Output = Self; #[inline] fn $method (self, other: usize) -> Self::Output {
let $a = self.get(); let $b = other as f64; Self($impl.into())
}
}
impl $Op<f64> for $T {
type Output = Self; #[inline] fn $method (self, other: f64) -> Self::Output {
let $a = self.get(); let $b = other; Self($impl.into())
}
}
}
}
/// Define and implement a unit of time
#[macro_export] macro_rules! impl_time_unit {
($T:ident) => {
impl Gettable<f64> for $T {
fn get (&self) -> f64 { self.0.load(Relaxed) }
}
impl InteriorMutable<f64> for $T {
fn set (&self, value: f64) -> f64 {
let old = self.get();
self.0.store(value, Relaxed);
old
}
}
impl TimeUnit for $T {}
impl_op!($T, Add, add, |a, b|{a + b});
impl_op!($T, Sub, sub, |a, b|{a - b});
impl_op!($T, Mul, mul, |a, b|{a * b});
impl_op!($T, Div, div, |a, b|{a / b});
impl_op!($T, Rem, rem, |a, b|{a % b});
impl From<f64> for $T { fn from (value: f64) -> Self { Self(value.into()) } }
impl From<usize> for $T { fn from (value: usize) -> Self { Self((value as f64).into()) } }
impl From<$T> for f64 { fn from (value: $T) -> Self { value.get() } }
impl From<$T> for usize { fn from (value: $T) -> Self { value.get() as usize } }
impl From<&$T> for f64 { fn from (value: &$T) -> Self { value.get() } }
impl From<&$T> for usize { fn from (value: &$T) -> Self { value.get() as usize } }
impl Clone for $T { fn clone (&self) -> Self { Self(self.get().into()) } }
}
}