wip: modularize once again

This commit is contained in:
🪞👃🪞 2025-01-08 18:50:15 +01:00
parent e08c9d1790
commit 3b6ff81dad
44 changed files with 984 additions and 913 deletions

View file

@ -27,7 +27,35 @@ pub struct Arranger {
pub perf: PerfModel,
pub compact: bool,
}
has_clock!(|self: Arranger|&self.clock);
has_phrases!(|self: Arranger|self.pool.phrases);
has_editor!(|self: Arranger|self.editor);
handle!(TuiIn: |self: Arranger, input|ArrangerCommand::execute_with_state(self, input.event()));
impl Arranger {
pub fn new (jack: &Arc<RwLock<JackConnection>>) -> Self {
let clock = Clock::from(jack);
let phrase = Arc::new(RwLock::new(MidiClip::new(
"Clip", true, 4 * clock.timebase.ppq.get() as usize,
None, Some(ItemColor::random().into())
)));
Self {
clock,
pool: (&phrase).into(),
editor: (&phrase).into(),
selected: ArrangerSelection::Clip(0, 0),
scenes: vec![],
tracks: vec![],
color: ItemPalette::random(),
mode: ArrangerMode::V(1),
size: Measure::new(),
splits: [12, 20],
midi_buf: vec![vec![];65536],
note_buf: vec![],
perf: PerfModel::default(),
jack: jack.clone(),
compact: true,
}
}
pub fn selected (&self) -> ArrangerSelection {
self.selected
}
@ -70,31 +98,3 @@ impl Arranger {
}
}
}
from_jack!(|jack| Arranger {
let clock = Clock::from(jack);
let phrase = Arc::new(RwLock::new(MidiClip::new(
"Clip", true, 4 * clock.timebase.ppq.get() as usize,
None, Some(ItemColor::random().into())
)));
Self {
clock,
pool: (&phrase).into(),
editor: (&phrase).into(),
selected: ArrangerSelection::Clip(0, 0),
scenes: vec![],
tracks: vec![],
color: TuiTheme::bg().into(),
mode: ArrangerMode::V(1),
size: Measure::new(),
splits: [12, 20],
midi_buf: vec![vec![];65536],
note_buf: vec![],
perf: PerfModel::default(),
jack: jack.clone(),
compact: true,
}
});
has_clock!(|self: Arranger|&self.clock);
has_phrases!(|self: Arranger|self.pool.phrases);
has_editor!(|self: Arranger|self.editor);
handle!(TuiIn: |self: Arranger, input|ArrangerCommand::execute_with_state(self, input.event()));

View file

@ -1,230 +0,0 @@
use crate::*;
pub mod clock_tui; pub use self::clock_tui::*;
pub mod microsecond; pub(crate) use self::microsecond::*;
pub mod moment; pub(crate) use self::moment::*;
pub mod perf; pub(crate) use self::perf::*;
pub mod pulse; pub(crate) use self::pulse::*;
pub mod sample_count; pub(crate) use self::sample_count::*;
pub mod sample_rate; pub(crate) use self::sample_rate::*;
pub mod timebase; pub(crate) use self::timebase::*;
pub mod unit; pub(crate) use self::unit::*;
pub trait HasClock: Send + Sync {
fn clock (&self) -> &Clock;
}
#[macro_export] macro_rules! has_clock {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasClock for $Struct $(<$($L),*$($T),*>)? {
fn clock (&$self) -> &Clock { $cb }
}
}
}
/// Hosts the JACK callback for updating the temporal pointer and playback status.
pub struct ClockAudio<'a, T: HasClock>(pub &'a mut T);
impl<T: HasClock> Audio for ClockAudio<'_, T> {
#[inline] fn process (&mut self, _: &Client, scope: &ProcessScope) -> Control {
self.0.clock().update_from_scope(scope).unwrap();
Control::Continue
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum ClockCommand {
Play(Option<u32>),
Pause(Option<u32>),
SeekUsec(f64),
SeekSample(f64),
SeekPulse(f64),
SetBpm(f64),
SetQuant(f64),
SetSync(f64),
}
impl<T: HasClock> Command<T> for ClockCommand {
fn execute (self, state: &mut T) -> Perhaps<Self> {
use ClockCommand::*;
match self {
Play(start) => state.clock().play_from(start)?,
Pause(pause) => state.clock().pause_at(pause)?,
SeekUsec(usec) => state.clock().playhead.update_from_usec(usec),
SeekSample(sample) => state.clock().playhead.update_from_sample(sample),
SeekPulse(pulse) => state.clock().playhead.update_from_pulse(pulse),
SetBpm(bpm) => return Ok(Some(SetBpm(state.clock().timebase().bpm.set(bpm)))),
SetQuant(quant) => return Ok(Some(SetQuant(state.clock().quant.set(quant)))),
SetSync(sync) => return Ok(Some(SetSync(state.clock().sync.set(sync)))),
};
Ok(None)
}
}
#[derive(Clone)]
pub struct Clock {
/// JACK transport handle.
pub transport: Arc<Transport>,
/// Global temporal resolution (shared by [Moment] fields)
pub timebase: Arc<Timebase>,
/// Current global sample and usec (monotonic from JACK clock)
pub global: Arc<Moment>,
/// Global sample and usec at which playback started
pub started: Arc<RwLock<Option<Moment>>>,
/// Playback offset (when playing not from start)
pub offset: Arc<Moment>,
/// Current playhead position
pub playhead: Arc<Moment>,
/// Note quantization factor
pub quant: Arc<Quantize>,
/// Launch quantization factor
pub sync: Arc<LaunchSync>,
/// Size of buffer in samples
pub chunk: Arc<AtomicUsize>,
}
from!(|jack: &Arc<RwLock<JackConnection>>| Clock = {
let jack = jack.read().unwrap();
let chunk = jack.client().buffer_size();
let transport = jack.client().transport();
let timebase = Arc::new(Timebase::default());
Self {
quant: Arc::new(24.into()),
sync: Arc::new(384.into()),
transport: Arc::new(transport),
chunk: Arc::new((chunk as usize).into()),
global: Arc::new(Moment::zero(&timebase)),
playhead: Arc::new(Moment::zero(&timebase)),
offset: Arc::new(Moment::zero(&timebase)),
started: RwLock::new(None).into(),
timebase,
}
});
impl std::fmt::Debug for Clock {
fn fmt (&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
f.debug_struct("Clock")
.field("timebase", &self.timebase)
.field("chunk", &self.chunk)
.field("quant", &self.quant)
.field("sync", &self.sync)
.field("global", &self.global)
.field("playhead", &self.playhead)
.field("started", &self.started)
.finish()
}
}
impl Clock {
pub fn timebase (&self) -> &Arc<Timebase> {
&self.timebase
}
/// Current sample rate
pub fn sr (&self) -> &SampleRate {
&self.timebase.sr
}
/// Current tempo
pub fn bpm (&self) -> &BeatsPerMinute {
&self.timebase.bpm
}
/// Current MIDI resolution
pub fn ppq (&self) -> &PulsesPerQuaver {
&self.timebase.ppq
}
/// Next pulse that matches launch sync (for phrase switchover)
pub fn next_launch_pulse (&self) -> usize {
let sync = self.sync.get() as usize;
let pulse = self.playhead.pulse.get() as usize;
if pulse % sync == 0 {
pulse
} else {
(pulse / sync + 1) * sync
}
}
/// Start playing, optionally seeking to a given location beforehand
pub fn play_from (&self, start: Option<u32>) -> Usually<()> {
if let Some(start) = start {
self.transport.locate(start)?;
}
self.transport.start()?;
Ok(())
}
/// Pause, optionally seeking to a given location afterwards
pub fn pause_at (&self, pause: Option<u32>) -> Usually<()> {
self.transport.stop()?;
if let Some(pause) = pause {
self.transport.locate(pause)?;
}
Ok(())
}
/// Is currently paused?
pub fn is_stopped (&self) -> bool {
self.started.read().unwrap().is_none()
}
/// Is currently playing?
pub fn is_rolling (&self) -> bool {
self.started.read().unwrap().is_some()
}
/// Update chunk size
pub fn set_chunk (&self, n_frames: usize) {
self.chunk.store(n_frames, Relaxed);
}
pub fn update_from_scope (&self, scope: &ProcessScope) -> Usually<()> {
// Store buffer length
self.set_chunk(scope.n_frames() as usize);
// Store reported global frame and usec
let CycleTimes { current_frames, current_usecs, .. } = scope.cycle_times()?;
self.global.sample.set(current_frames as f64);
self.global.usec.set(current_usecs as f64);
// If transport has just started or just stopped,
// update starting point:
let mut started = self.started.write().unwrap();
match (self.transport.query_state()?, started.as_ref()) {
(TransportState::Rolling, None) => {
let moment = Moment::zero(&self.timebase);
moment.sample.set(current_frames as f64);
moment.usec.set(current_usecs as f64);
*started = Some(moment);
},
(TransportState::Stopped, Some(_)) => {
*started = None;
},
_ => {}
};
self.playhead.update_from_sample(started.as_ref()
.map(|started|current_frames as f64 - started.sample.get())
.unwrap_or(0.));
Ok(())
}
pub fn bbt (&self) -> ::jack::contrib::PositionBBT {
let pulse = self.playhead.pulse.get() as i32;
let ppq = self.timebase.ppq.get() as i32;
let bpm = self.timebase.bpm.get();
let bar = (pulse / ppq) / 4;
::jack::contrib::PositionBBT {
bar: 1 + bar,
beat: 1 + (pulse / ppq) % 4,
tick: (pulse % ppq),
bar_start_tick: (bar * 4 * ppq) as f64,
beat_type: 4.,
beats_per_bar: 4.,
beats_per_minute: bpm,
ticks_per_beat: ppq as f64
}
}
}
//#[cfg(test)]
//mod test {
//use super::*;
//#[test]
//fn test_samples_to_ticks () {
//let ticks = Ticks(12.3).between_samples(0, 100).collect::<Vec<_>>();
//println!("{ticks:?}");
//}
//}

View file

@ -1,137 +0,0 @@
use crate::*;
use ClockCommand::{Play, Pause, SetBpm, SetQuant, SetSync};
use FocusCommand::{Next, Prev};
use KeyCode::{Enter, Left, Right, Char};
/// Transport clock app.
pub struct TransportTui {
pub jack: Arc<RwLock<JackConnection>>,
pub clock: Clock,
}
has_clock!(|self: TransportTui|&self.clock);
audio!(|self: TransportTui, client, scope|ClockAudio(self).process(client, scope));
render!(TuiOut: (self: TransportTui) => TransportView {
compact: false,
clock: &self.clock
});
impl TransportTui {
pub fn new (jack: &Arc<RwLock<JackConnection>>) -> Usually<Self> {
Ok(Self { jack: jack.clone(), clock: Clock::from(jack) })
}
}
pub struct TransportView<'a> { pub compact: bool, pub clock: &'a Clock }
impl<'a> TransportView<'a> {
pub fn new (compact: bool, clock: &'a Clock) -> Self {
Self { compact, clock }
}
}
render!(TuiOut: (self: TransportView<'a>) => Outer(
Style::default().fg(TuiTheme::g(255))
).enclose(row!(
OutputStats::new(self.compact, self.clock),
" ",
PlayPause { compact: false, playing: self.clock.is_rolling() },
" ",
BeatStats::new(self.compact, self.clock),
)));
pub struct PlayPause { pub compact: bool, pub playing: bool }
render!(TuiOut: (self: PlayPause) => Tui::bg(
if self.playing{Color::Rgb(0,128,0)}else{Color::Rgb(128,64,0)},
Either(self.compact,
Thunk::new(||Fixed::x(9, Either(self.playing,
Tui::fg(Color::Rgb(0, 255, 0), " PLAYING "),
Tui::fg(Color::Rgb(255, 128, 0), " STOPPED ")))),
Thunk::new(||Fixed::x(5, Either(self.playing,
Tui::fg(Color::Rgb(0, 255, 0), Bsp::s(" 🭍🭑🬽 ", " 🭞🭜🭘 ",)),
Tui::fg(Color::Rgb(255, 128, 0), Bsp::s(" ▗▄▖ ", " ▝▀▘ ",))))))));
pub struct BeatStats { compact: bool, bpm: Arc<str>, beat: Arc<str>, time: Arc<str>, }
impl BeatStats {
fn new (compact: bool, clock: &Clock) -> Self {
let bpm = format!("{:.3}", clock.timebase.bpm.get()).into();
let (beat, time) = if let Some(started) = clock.started.read().unwrap().as_ref() {
let now = clock.global.usec.get() - started.usec.get();
(
clock.timebase.format_beats_1(clock.timebase.usecs_to_pulse(now)).into(),
format!("{:.3}s", now/1000000.).into()
)
} else {
("-.-.--".to_string().into(), "-.---s".to_string().into())
};
Self { compact, bpm, beat, time }
}
}
render!(TuiOut: (self: BeatStats) => Either(self.compact,
row!(
FieldV(TuiTheme::g(128).into(), "BPM", &self.bpm),
FieldV(TuiTheme::g(128).into(), "Beat", &self.beat),
FieldV(TuiTheme::g(128).into(), "Time", &self.time),
),
col!(
Bsp::e(Tui::fg(TuiTheme::g(255), &self.bpm), " BPM"),
Bsp::e("Beat ", Tui::fg(TuiTheme::g(255), &self.beat)),
Bsp::e("Time ", Tui::fg(TuiTheme::g(255), &self.time)),
)));
pub struct OutputStats { compact: bool, sample_rate: Arc<str>, buffer_size: Arc<str>, latency: Arc<str>, }
impl OutputStats {
fn new (compact: bool, clock: &Clock) -> Self {
let rate = clock.timebase.sr.get();
let chunk = clock.chunk.load(Relaxed);
Self {
compact,
sample_rate: if compact {
format!("{:.1}kHz", rate / 1000.)
} else {
format!("{:.0}Hz", rate)
}.into(),
buffer_size: format!("{chunk}").into(),
latency: format!("{:.1}ms", chunk as f64 / rate * 1000.).into(),
}
}
}
render!(TuiOut: (self: OutputStats) => Either(self.compact,
row!(
FieldV(TuiTheme::g(128).into(), "SR", &self.sample_rate),
FieldV(TuiTheme::g(128).into(), "Buf", &self.buffer_size),
FieldV(TuiTheme::g(128).into(), "Lat", &self.latency),
),
col!(
Bsp::e(Tui::fg(TuiTheme::g(255), format!("{}", self.sample_rate)), " sample rate"),
Bsp::e(Tui::fg(TuiTheme::g(255), format!("{}", self.buffer_size)), " sample buffer"),
Bsp::e(Tui::fg(TuiTheme::g(255), format!("{:.3}ms", self.latency)), " latency"),
)));
handle!(TuiIn: |self: TransportTui, input|ClockCommand::execute_with_state(self, input.event()));
keymap!(TRANSPORT_KEYS = |state: TransportTui, input: Event| ClockCommand {
key(Char(' ')) =>
if state.clock().is_stopped() { Play(None) } else { Pause(None) },
shift(key(Char(' '))) =>
if state.clock().is_stopped() { Play(Some(0)) } else { Pause(Some(0)) }
});
// TODO:
//keymap!(TRANSPORT_BPM_KEYS = |state: Clock, input: Event| ClockCommand {
//key(Char(',')) => SetBpm(state.bpm().get() - 1.0),
//key(Char('.')) => SetBpm(state.bpm().get() + 1.0),
//key(Char('<')) => SetBpm(state.bpm().get() - 0.001),
//key(Char('>')) => SetBpm(state.bpm().get() + 0.001),
//});
//keymap!(TRANSPORT_QUANT_KEYS = |state: Clock, input: Event| ClockCommand {
//key(Char(',')) => SetQuant(state.quant.prev()),
//key(Char('.')) => SetQuant(state.quant.next()),
//key(Char('<')) => SetQuant(state.quant.prev()),
//key(Char('>')) => SetQuant(state.quant.next()),
//});
//keymap!(TRANSPORT_SYNC_KEYS = |sync: Clock, input: Event | ClockCommand {
//key(Char(',')) => SetSync(state.sync.prev()),
//key(Char('.')) => SetSync(state.sync.next()),
//key(Char('<')) => SetSync(state.sync.prev()),
//key(Char('>')) => SetSync(state.sync.next()),
//});
//keymap!(TRANSPORT_SEEK_KEYS = |state: Clock, input: Event| ClockCommand {
//key(Char(',')) => todo!("transport seek bar"),
//key(Char('.')) => todo!("transport seek bar"),
//key(Char('<')) => todo!("transport seek beat"),
//key(Char('>')) => todo!("transport seek beat"),
//});

View file

@ -1,15 +0,0 @@
use crate::*;
/// Timestamp in microseconds
#[derive(Debug, Default)] pub struct Microsecond(AtomicF64);
impl_time_unit!(Microsecond);
impl Microsecond {
#[inline] pub fn format_msu (&self) -> Arc<str> {
let usecs = self.get() as usize;
let (seconds, msecs) = (usecs / 1000000, usecs / 1000 % 1000);
let (minutes, seconds) = (seconds / 60, seconds % 60);
format!("{minutes}:{seconds:02}:{msecs:03}").into()
}
}

View file

@ -1,70 +0,0 @@
use crate::*;
#[derive(Debug, Clone)]
pub enum Moment2 {
None,
Zero,
Usec(Microsecond),
Sample(SampleCount),
Pulse(Pulse),
}
/// A point in time in all time scales (microsecond, sample, MIDI pulse)
#[derive(Debug, Default, Clone)]
pub struct Moment {
pub timebase: Arc<Timebase>,
/// Current time in microseconds
pub usec: Microsecond,
/// Current time in audio samples
pub sample: SampleCount,
/// Current time in MIDI pulses
pub pulse: Pulse,
}
impl Moment {
pub fn zero (timebase: &Arc<Timebase>) -> Self {
Self { usec: 0.into(), sample: 0.into(), pulse: 0.into(), timebase: timebase.clone() }
}
pub fn from_usec (timebase: &Arc<Timebase>, usec: f64) -> Self {
Self {
usec: usec.into(),
sample: timebase.sr.usecs_to_sample(usec).into(),
pulse: timebase.usecs_to_pulse(usec).into(),
timebase: timebase.clone(),
}
}
pub fn from_sample (timebase: &Arc<Timebase>, sample: f64) -> Self {
Self {
sample: sample.into(),
usec: timebase.sr.samples_to_usec(sample).into(),
pulse: timebase.samples_to_pulse(sample).into(),
timebase: timebase.clone(),
}
}
pub fn from_pulse (timebase: &Arc<Timebase>, pulse: f64) -> Self {
Self {
pulse: pulse.into(),
sample: timebase.pulses_to_sample(pulse).into(),
usec: timebase.pulses_to_usec(pulse).into(),
timebase: timebase.clone(),
}
}
#[inline] pub fn update_from_usec (&self, usec: f64) {
self.usec.set(usec);
self.pulse.set(self.timebase.usecs_to_pulse(usec));
self.sample.set(self.timebase.sr.usecs_to_sample(usec));
}
#[inline] pub fn update_from_sample (&self, sample: f64) {
self.usec.set(self.timebase.sr.samples_to_usec(sample));
self.pulse.set(self.timebase.samples_to_pulse(sample));
self.sample.set(sample);
}
#[inline] pub fn update_from_pulse (&self, pulse: f64) {
self.usec.set(self.timebase.pulses_to_usec(pulse));
self.pulse.set(pulse);
self.sample.set(self.timebase.pulses_to_sample(pulse));
}
#[inline] pub fn format_beat (&self) -> Arc<str> {
self.timebase.format_beats_1(self.pulse.get()).into()
}
}

View file

@ -1,58 +0,0 @@
use crate::*;
/// Performance counter
pub struct PerfModel {
pub enabled: bool,
clock: quanta::Clock,
// In nanoseconds
used: AtomicF64,
// In microseconds
period: AtomicF64,
}
pub trait HasPerf {
fn perf (&self) -> &PerfModel;
}
impl Default for PerfModel {
fn default () -> Self {
Self {
enabled: true,
clock: quanta::Clock::new(),
used: Default::default(),
period: Default::default(),
}
}
}
impl PerfModel {
pub fn get_t0 (&self) -> Option<u64> {
if self.enabled {
Some(self.clock.raw())
} else {
None
}
}
pub fn update (&self, t0: Option<u64>, scope: &ProcessScope) {
if let Some(t0) = t0 {
let t1 = self.clock.raw();
self.used.store(
self.clock.delta_as_nanos(t0, t1) as f64,
Relaxed,
);
self.period.store(
scope.cycle_times().unwrap().period_usecs as f64,
Relaxed,
);
}
}
pub fn percentage (&self) -> Option<f64> {
let period = self.period.load(Relaxed) * 1000.0;
if period > 0.0 {
let used = self.used.load(Relaxed);
Some(100.0 * used / period)
} else {
None
}
}
}

View file

@ -1,71 +0,0 @@
use crate::*;
pub const DEFAULT_PPQ: f64 = 96.0;
/// FIXME: remove this and use PPQ from timebase everywhere:
pub const PPQ: usize = 96;
/// MIDI resolution in PPQ (pulses per quarter note)
#[derive(Debug, Default)] pub struct PulsesPerQuaver(AtomicF64);
impl_time_unit!(PulsesPerQuaver);
/// Timestamp in MIDI pulses
#[derive(Debug, Default)] pub struct Pulse(AtomicF64);
impl_time_unit!(Pulse);
/// Tempo in beats per minute
#[derive(Debug, Default)] pub struct BeatsPerMinute(AtomicF64);
impl_time_unit!(BeatsPerMinute);
/// Quantization setting for launching clips
#[derive(Debug, Default)] pub struct LaunchSync(AtomicF64);
impl_time_unit!(LaunchSync);
impl LaunchSync {
pub fn next (&self) -> f64 {
Note::next(self.get() as usize) as f64
}
pub fn prev (&self) -> f64 {
Note::prev(self.get() as usize) as f64
}
}
/// Quantization setting for notes
#[derive(Debug, Default)] pub struct Quantize(AtomicF64);
impl_time_unit!(Quantize);
impl Quantize {
pub fn next (&self) -> f64 {
Note::next(self.get() as usize) as f64
}
pub fn prev (&self) -> f64 {
Note::prev(self.get() as usize) as f64
}
}
/// Iterator that emits subsequent ticks within a range.
pub struct TicksIterator {
pub spp: f64,
pub sample: usize,
pub start: usize,
pub end: usize,
}
impl Iterator for TicksIterator {
type Item = (usize, usize);
fn next (&mut self) -> Option<Self::Item> {
loop {
if self.sample > self.end { return None }
let spp = self.spp;
let sample = self.sample as f64;
let start = self.start;
let end = self.end;
self.sample += 1;
//println!("{spp} {sample} {start} {end}");
let jitter = sample.rem_euclid(spp); // ramps
let next_jitter = (sample + 1.0).rem_euclid(spp);
if jitter > next_jitter { // at crossing:
let time = (sample as usize) % (end as usize-start as usize);
let tick = (sample / spp) as usize;
return Some((time, tick))
}
}
}
}

View file

@ -1,5 +0,0 @@
use crate::*;
/// Timestamp in audio samples
#[derive(Debug, Default)] pub struct SampleCount(AtomicF64);
impl_time_unit!(SampleCount);

View file

@ -1,23 +0,0 @@
use crate::*;
/// Audio sample rate in Hz (samples per second)
#[derive(Debug, Default)] pub struct SampleRate(AtomicF64);
impl_time_unit!(SampleRate);
impl SampleRate {
/// Return the duration of a sample in microseconds (floating)
#[inline] pub fn usec_per_sample (&self) -> f64 {
1_000_000f64 / self.get()
}
/// Return the duration of a sample in microseconds (floating)
#[inline] pub fn sample_per_usec (&self) -> f64 {
self.get() / 1_000_000f64
}
/// Convert a number of samples to microseconds (floating)
#[inline] pub fn samples_to_usec (&self, samples: f64) -> f64 {
self.usec_per_sample() * samples
}
/// Convert a number of microseconds to samples (floating)
#[inline] pub fn usecs_to_sample (&self, usecs: f64) -> f64 {
self.sample_per_usec() * usecs
}
}

View file

@ -1,112 +0,0 @@
use crate::*;
/// Temporal resolutions: sample rate, tempo, MIDI pulses per quaver (beat)
#[derive(Debug, Clone)]
pub struct Timebase {
/// Audio samples per second
pub sr: SampleRate,
/// MIDI beats per minute
pub bpm: BeatsPerMinute,
/// MIDI ticks per beat
pub ppq: PulsesPerQuaver,
}
impl Timebase {
/// Specify sample rate, BPM and PPQ
pub fn new (
s: impl Into<SampleRate>,
b: impl Into<BeatsPerMinute>,
p: impl Into<PulsesPerQuaver>
) -> Self {
Self { sr: s.into(), bpm: b.into(), ppq: p.into() }
}
/// Iterate over ticks between start and end.
#[inline] pub fn pulses_between_samples (&self, start: usize, end: usize) -> TicksIterator {
TicksIterator { spp: self.samples_per_pulse(), sample: start, start, end }
}
/// Return the duration fo a beat in microseconds
#[inline] pub fn usec_per_beat (&self) -> f64 { 60_000_000f64 / self.bpm.get() }
/// Return the number of beats in a second
#[inline] pub fn beat_per_second (&self) -> f64 { self.bpm.get() / 60f64 }
/// Return the number of microseconds corresponding to a note of the given duration
#[inline] pub fn note_to_usec (&self, (num, den): (f64, f64)) -> f64 {
4.0 * self.usec_per_beat() * num / den
}
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn pulse_per_usec (&self) -> f64 { self.ppq.get() / self.usec_per_beat() }
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn usec_per_pulse (&self) -> f64 { self.usec_per_beat() / self.ppq.get() }
/// Return number of pulses to which a number of microseconds corresponds (BPM-dependent)
#[inline] pub fn usecs_to_pulse (&self, usec: f64) -> f64 { usec * self.pulse_per_usec() }
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_usec (&self, pulse: f64) -> f64 { pulse / self.usec_per_pulse() }
/// Return number of pulses in a second (BPM-dependent)
#[inline] pub fn pulses_per_second (&self) -> f64 { self.beat_per_second() * self.ppq.get() }
/// Return fraction of a pulse to which a sample corresponds (SR- and BPM-dependent)
#[inline] pub fn pulses_per_sample (&self) -> f64 {
self.usec_per_pulse() / self.sr.usec_per_sample()
}
/// Return number of samples in a pulse (SR- and BPM-dependent)
#[inline] pub fn samples_per_pulse (&self) -> f64 {
self.sr.get() / self.pulses_per_second()
}
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_sample (&self, p: f64) -> f64 {
self.pulses_per_sample() * p
}
/// Convert a number of samples to a pulse number (SR- and BPM-dependent)
#[inline] pub fn samples_to_pulse (&self, s: f64) -> f64 {
s / self.pulses_per_sample()
}
/// Return the number of samples corresponding to a note of the given duration
#[inline] pub fn note_to_samples (&self, note: (f64, f64)) -> f64 {
self.usec_to_sample(self.note_to_usec(note))
}
/// Return the number of samples corresponding to the given number of microseconds
#[inline] pub fn usec_to_sample (&self, usec: f64) -> f64 {
usec * self.sr.get() / 1000f64
}
/// Return the quantized position of a moment in time given a step
#[inline] pub fn quantize (&self, step: (f64, f64), time: f64) -> (f64, f64) {
let step = self.note_to_usec(step);
(time / step, time % step)
}
/// Quantize a collection of events
#[inline] pub fn quantize_into <E: Iterator<Item=(f64, f64)> + Sized, T> (
&self, step: (f64, f64), events: E
) -> Vec<(f64, f64)> {
events.map(|(time, event)|(self.quantize(step, time).0, event)).collect()
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 0
#[inline] pub fn format_beats_0 (&self, pulse: f64) -> Arc<str> {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4, beats % 4).into()
}
/// Format a number of pulses into Beat.Bar starting from 0
#[inline] pub fn format_beats_0_short (&self, pulse: f64) -> Arc<str> {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4, beats % 4).into()
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1 (&self, pulse: f64) -> Arc<str> {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4 + 1, beats % 4 + 1).into()
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1_short (&self, pulse: f64) -> Arc<str> {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4 + 1, beats % 4 + 1).into()
}
}
impl Default for Timebase {
fn default () -> Self { Self::new(48000f64, 150f64, DEFAULT_PPQ) }
}

View file

@ -1,59 +0,0 @@
use crate::*;
/// A unit of time, represented as an atomic 64-bit float.
///
/// According to https://stackoverflow.com/a/873367, as per IEEE754,
/// every integer between 1 and 2^53 can be represented exactly.
/// This should mean that, even at 192kHz sampling rate, over 1 year of audio
/// can be clocked in microseconds with f64 without losing precision.
pub trait TimeUnit: InteriorMutable<f64> {}
/// Implement an arithmetic operation for a unit of time
#[macro_export] macro_rules! impl_op {
($T:ident, $Op:ident, $method:ident, |$a:ident,$b:ident|{$impl:expr}) => {
impl $Op<Self> for $T {
type Output = Self; #[inline] fn $method (self, other: Self) -> Self::Output {
let $a = self.get(); let $b = other.get(); Self($impl.into())
}
}
impl $Op<usize> for $T {
type Output = Self; #[inline] fn $method (self, other: usize) -> Self::Output {
let $a = self.get(); let $b = other as f64; Self($impl.into())
}
}
impl $Op<f64> for $T {
type Output = Self; #[inline] fn $method (self, other: f64) -> Self::Output {
let $a = self.get(); let $b = other; Self($impl.into())
}
}
}
}
/// Define and implement a unit of time
#[macro_export] macro_rules! impl_time_unit {
($T:ident) => {
impl Gettable<f64> for $T {
fn get (&self) -> f64 { self.0.load(Relaxed) }
}
impl InteriorMutable<f64> for $T {
fn set (&self, value: f64) -> f64 {
let old = self.get();
self.0.store(value, Relaxed);
old
}
}
impl TimeUnit for $T {}
impl_op!($T, Add, add, |a, b|{a + b});
impl_op!($T, Sub, sub, |a, b|{a - b});
impl_op!($T, Mul, mul, |a, b|{a * b});
impl_op!($T, Div, div, |a, b|{a / b});
impl_op!($T, Rem, rem, |a, b|{a % b});
impl From<f64> for $T { fn from (value: f64) -> Self { Self(value.into()) } }
impl From<usize> for $T { fn from (value: usize) -> Self { Self((value as f64).into()) } }
impl From<$T> for f64 { fn from (value: $T) -> Self { value.get() } }
impl From<$T> for usize { fn from (value: $T) -> Self { value.get() as usize } }
impl From<&$T> for f64 { fn from (value: &$T) -> Self { value.get() } }
impl From<&$T> for usize { fn from (value: &$T) -> Self { value.get() as usize } }
impl Clone for $T { fn clone (&self) -> Self { Self(self.get().into()) } }
}
}

View file

@ -1,36 +0,0 @@
use crate::*;
pub struct Field<T, U>(pub ItemPalette, pub T, pub U)
where T: AsRef<str> + Send + Sync, U: AsRef<str> + Send + Sync;
impl<T, U> Content<TuiOut> for Field<T, U>
where T: AsRef<str> + Send + Sync, U: AsRef<str> + Send + Sync
{
fn content (&self) -> impl Render<TuiOut> {
let ItemPalette { darkest, dark, lighter, lightest, .. } = self.0;
row!(
Tui::fg_bg(dark.rgb, darkest.rgb, ""),
Tui::fg_bg(lighter.rgb, dark.rgb, Tui::bold(true, format!("{}", self.1.as_ref()))),
Tui::fg_bg(dark.rgb, darkest.rgb, ""),
Tui::fg_bg(lightest.rgb, darkest.rgb, format!("{} ", self.2.as_ref()))
)
}
}
pub struct FieldV<T, U>(pub ItemPalette, pub T, pub U)
where T: AsRef<str> + Send + Sync, U: AsRef<str> + Send + Sync;
impl<T, U> Content<TuiOut> for FieldV<T, U>
where T: AsRef<str> + Send + Sync, U: AsRef<str> + Send + Sync
{
fn content (&self) -> impl Render<TuiOut> {
let ItemPalette { darkest, dark, lighter, lightest, .. } = self.0;
let sep1 = Tui::bg(darkest.rgb, Tui::fg(dark.rgb, ""));
let sep2 = Tui::bg(darkest.rgb, Tui::fg(dark.rgb, ""));
let name = Tui::bg(dark.rgb, Tui::fg(lighter.rgb,
Tui::bold(true, format!("{}", self.1.as_ref()))));
let value = Tui::bg(darkest.rgb, Tui::fg(lightest.rgb,
format!(" {} ", self.2.as_ref())));
Bsp::e(Bsp::s(row!(sep1, name, sep2), value), " ")
}
}

View file

@ -1,7 +1,6 @@
mod groovebox_audio; pub use self::groovebox_audio::*;
mod groovebox_command; pub use self::groovebox_command::*;
mod groovebox_tui; pub use self::groovebox_tui::*;
mod groovebox_edn; pub use self::groovebox_edn::*;
use crate::*;
use super::*;
@ -25,38 +24,48 @@ pub struct Groovebox {
pub midi_buf: Vec<Vec<Vec<u8>>>,
pub perf: PerfModel,
}
has_clock!(|self: Groovebox|self.player.clock());
impl Groovebox {
pub fn new (
jack: &Arc<RwLock<JackConnection>>,
midi_from: &[impl AsRef<str>],
midi_to: &[impl AsRef<str>],
audio_from: &[&[impl AsRef<str>];2],
audio_to: &[&[impl AsRef<str>];2],
) -> Usually<Self> {
let sampler = crate::sampler::Sampler::new(jack, &"sampler", midi_from, audio_from, audio_to)?;
let mut player = crate::midi::MidiPlayer::new(jack, &"sequencer", &midi_from, &midi_to)?;
jack.read().unwrap().client().connect_ports(&player.midi_outs[0], &sampler.midi_in)?;
let phrase = Arc::new(RwLock::new(MidiClip::new(
"Clip", true, 4 * player.clock.timebase.ppq.get() as usize,
None, Some(ItemColor::random().into())
)));
player.play_phrase = Some((Moment::zero(&player.clock.timebase), Some(phrase.clone())));
Ok(Self {
player,
sampler,
_jack: jack.clone(),
pool: crate::pool::PoolModel::from(&phrase),
editor: crate::midi::MidiEditor::from(&phrase),
impl EdnViewData<TuiOut> for &Groovebox {
fn get_unit (&self, item: EdnItem<&str>) -> u16 {
use EdnItem::*;
match item.to_str() {
":sample-h" => if self.compact { 0 } else { 5 },
":samples-w" => if self.compact { 4 } else { 11 },
":samples-y" => if self.compact { 1 } else { 0 },
":pool-w" => if self.compact { 5 } else {
let w = self.size.w();
if w > 60 { 20 } else if w > 40 { 15 } else { 10 }
},
_ => 0
}
}
fn get_content <'a> (&'a self, item: EdnItem<&str>) -> RenderBox<'a, TuiOut> {
use EdnItem::*;
match item {
Nil => Box::new(()),
Sym(bol) => match bol {
":input-meter-l" => Meter("L/", self.sampler.input_meter[0]).boxed(),
":input-meter-r" => Box::new(Meter("R/", self.sampler.input_meter[1])),
compact: true,
status: true,
size: Measure::new(),
midi_buf: vec![vec![];65536],
note_buf: vec![],
perf: PerfModel::default(),
})
":transport" => Box::new(TransportView::new(true, &self.player.clock)),
":clip-play" => Box::new(self.player.play_status()),
":clip-next" => Box::new(self.player.next_status()),
":clip-edit" => Box::new(self.editor.clip_status()),
":edit-stat" => Box::new(self.editor.edit_status()),
":pool-view" => Box::new(PoolView(self.compact, &self.pool)),
":midi-view" => Box::new(&self.editor),
":sample-view" => Box::new(SampleViewer::from_sampler(&self.sampler, self.editor.note_point())),
":sample-stat" => Box::new(SamplerStatus(&self.sampler, self.editor.note_point())),
":samples-view" => Box::new(SampleList::new(self.compact, &self.sampler, &self.editor)),
_ => panic!("unknown sym {bol:?}")
},
Exp(items) => Box::new(EdnView::from_items(*self, items.as_slice())),
_ => panic!("no content for {item:?}")
}
}
}

View file

@ -1,44 +0,0 @@
use crate::*;
impl EdnViewData<TuiOut> for &Groovebox {
fn get_unit (&self, item: EdnItem<&str>) -> u16 {
use EdnItem::*;
match item.to_str() {
":sample-h" => if self.compact { 0 } else { 5 },
":samples-w" => if self.compact { 4 } else { 11 },
":samples-y" => if self.compact { 1 } else { 0 },
":pool-w" => if self.compact { 5 } else {
let w = self.size.w();
if w > 60 { 20 } else if w > 40 { 15 } else { 10 }
},
_ => 0
}
}
fn get_content <'a> (&'a self, item: EdnItem<&str>) -> RenderBox<'a, TuiOut> {
use EdnItem::*;
match item {
Nil => Box::new(()),
Sym(bol) => match bol {
":input-meter-l" => Meter("L/", self.sampler.input_meter[0]).boxed(),
":input-meter-r" => Box::new(Meter("R/", self.sampler.input_meter[1])),
":transport" => Box::new(TransportView::new(true, &self.player.clock)),
":clip-play" => Box::new(self.player.play_status()),
":clip-next" => Box::new(self.player.next_status()),
":clip-edit" => Box::new(self.editor.clip_status()),
":edit-stat" => Box::new(self.editor.edit_status()),
":pool-view" => Box::new(PoolView(self.compact, &self.pool)),
":midi-view" => Box::new(&self.editor),
":sample-view" => Box::new(SampleViewer::from_sampler(&self.sampler, self.editor.note_point())),
":sample-stat" => Box::new(SamplerStatus(&self.sampler, self.editor.note_point())),
":samples-view" => Box::new(SampleList::new(self.compact, &self.sampler, &self.editor)),
_ => panic!("unknown sym {bol:?}")
},
Exp(items) => Box::new(EdnView::from_items(*self, items.as_slice())),
_ => panic!("no content for {item:?}")
}
}
}

View file

@ -13,7 +13,7 @@ render!(TuiOut: (self: Groovebox) => self.size.of(
Bsp::n(self.status_view(),
Bsp::w(self.pool_view(), Fill::xy(Bsp::e(self.sampler_view(), &self.editor)))))))));
// this almost works:
// this almost does:
//impl Content<TuiOut> for Groovebox {
//fn content (&self) -> impl Render<TuiOut> {
//self.size.of(EdnView::from_source(self, EDN))

View file

@ -1,624 +0,0 @@
use crate::*;
pub use ::jack as libjack;
pub use ::jack::{
contrib::ClosureProcessHandler, NotificationHandler,
Client, AsyncClient, ClientOptions, ClientStatus,
ProcessScope, Control, CycleTimes, Frames,
Port, PortId, PortSpec, Unowned, MidiIn, MidiOut, AudioIn, AudioOut,
Transport, TransportState, MidiIter, MidiWriter, RawMidi,
};
/// Implement [TryFrom<&Arc<RwLock<JackConnection>>>]: create app state from wrapped JACK handle.
#[macro_export] macro_rules! from_jack {
(|$jack:ident|$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)? $cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? TryFrom<&Arc<RwLock<JackConnection>>> for $Struct $(<$($L),*$($T),*>)? {
type Error = Box<dyn std::error::Error>;
fn try_from ($jack: &Arc<RwLock<JackConnection>>) -> Usually<Self> {
Ok($cb)
}
}
};
}
/// Implement [Audio]: provide JACK callbacks.
#[macro_export] macro_rules! audio {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?,$c:ident,$s:ident|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? Audio for $Struct $(<$($L),*$($T),*>)? {
#[inline] fn process (&mut $self, $c: &Client, $s: &ProcessScope) -> Control { $cb }
}
}
}
/// Trait for thing that has a JACK process callback.
pub trait Audio: Send + Sync {
fn process (&mut self, _: &Client, _: &ProcessScope) -> Control {
Control::Continue
}
fn callback (
state: &Arc<RwLock<Self>>, client: &Client, scope: &ProcessScope
) -> Control where Self: Sized {
if let Ok(mut state) = state.write() {
state.process(client, scope)
} else {
Control::Quit
}
}
}
/// This is a boxed realtime callback.
pub type BoxedAudioHandler = Box<dyn FnMut(&Client, &ProcessScope) -> Control + Send>;
/// This is the notification handler wrapper for a boxed realtime callback.
pub type DynamicAudioHandler = ClosureProcessHandler<(), BoxedAudioHandler>;
/// This is a boxed [JackEvent] callback.
pub type BoxedJackEventHandler = Box<dyn Fn(JackEvent) + Send + Sync>;
/// This is the notification handler wrapper for a boxed [JackEvent] callback.
pub type DynamicNotifications = Notifications<BoxedJackEventHandler>;
/// This is a running JACK [AsyncClient] with maximum type erasure.
/// It has one [Box] containing a function that handles [JackEvent]s,
/// and another [Box] containing a function that handles realtime IO,
/// and that's all it knows about them.
pub type DynamicAsyncClient = AsyncClient<DynamicNotifications, DynamicAudioHandler>;
/// This is a connection which may be `Inactive`, `Activating`, or `Active`.
/// In the `Active` and `Inactive` states, its `client` method returns a
/// [Client] which you can use to talk to the JACK API.
#[derive(Debug)]
pub enum JackConnection {
/// Before activation.
Inactive(Client),
/// During activation.
Activating,
/// After activation. Must not be dropped for JACK thread to persist.
Active(DynamicAsyncClient),
}
from!(|jack: JackConnection|Client = match jack {
JackConnection::Inactive(client) => client,
JackConnection::Activating => panic!("jack client still activating"),
JackConnection::Active(_) => panic!("jack client already activated"),
});
impl JackConnection {
pub fn new (name: &str) -> Usually<Self> {
let (client, _) = Client::new(name, ClientOptions::NO_START_SERVER)?;
Ok(Self::Inactive(client))
}
/// Return the internal [Client] handle that lets you call the JACK API.
pub fn client (&self) -> &Client {
match self {
Self::Inactive(ref client) => client,
Self::Activating => panic!("jack client has not finished activation"),
Self::Active(ref client) => client.as_client(),
}
}
/// Activate a connection with an application.
///
/// Consume a `JackConnection::Inactive`,
/// binding a process callback and
/// returning a `JackConnection::Active`.
///
/// Needs work. Strange ownership situation between the callback
/// and the host object.
fn activate (
self,
mut cb: impl FnMut(&Arc<RwLock<Self>>, &Client, &ProcessScope) -> Control + Send + 'static,
) -> Usually<Arc<RwLock<Self>>>
where
Self: Send + Sync + 'static
{
let client = Client::from(self);
let state = Arc::new(RwLock::new(Self::Activating));
let event = Box::new(move|_|{/*TODO*/}) as Box<dyn Fn(JackEvent) + Send + Sync>;
let events = Notifications(event);
let frame = Box::new({let state = state.clone(); move|c: &_, s: &_|cb(&state, c, s)});
let frames = ClosureProcessHandler::new(frame as BoxedAudioHandler);
*state.write().unwrap() = Self::Active(client.activate_async(events, frames)?);
Ok(state)
}
/// Activate a connection with an application.
///
/// * Wrap a [JackConnection::Inactive] into [Arc<RwLock<_>>].
/// * Pass it to the `init` callback
/// * This allows user code to connect to JACK
/// * While user code retains clone of the
/// [Arc<RwLock<JackConnection>>] that is
/// passed to `init`, the audio engine is running.
pub fn activate_with <T: Audio + 'static> (
self,
init: impl FnOnce(&Arc<RwLock<JackConnection>>)->Usually<T>
)
-> Usually<Arc<RwLock<T>>>
{
// Wrap self for multiple ownership.
let connection = Arc::new(RwLock::new(self));
// Run init callback. Return value is target. Target must retain clone of `connection`.
let target = Arc::new(RwLock::new(init(&connection)?));
// Swap the `client` from the `JackConnection::Inactive`
// for a `JackConnection::Activating`.
let mut client = Self::Activating;
std::mem::swap(&mut*connection.write().unwrap(), &mut client);
// Replace the `JackConnection::Activating` with a
// `JackConnection::Active` wrapping the [AsyncClient]
// returned by the activation.
*connection.write().unwrap() = Self::Active(Client::from(client).activate_async(
// This is the misc notifications handler. It's a struct that wraps a [Box]
// which performs type erasure on a callback that takes [JackEvent], which is
// one of the available misc notifications.
Notifications(Box::new(move|_|{/*TODO*/}) as BoxedJackEventHandler),
// This is the main processing handler. It's a struct that wraps a [Box]
// which performs type erasure on a callback that takes [Client] and [ProcessScope]
// and passes them down to the `target`'s `process` callback, which in turn
// implements audio and MIDI input and output on a realtime basis.
ClosureProcessHandler::new(Box::new({
let target = target.clone();
move|c: &_, s: &_|if let Ok(mut target) = target.write() {
target.process(c, s)
} else {
Control::Quit
}
}) as BoxedAudioHandler),
)?);
Ok(target)
}
pub fn port_by_name (&self, name: &str) -> Option<Port<Unowned>> {
self.client().port_by_name(name)
}
pub fn register_port <PS: PortSpec> (&self, name: &str, spec: PS) -> Usually<Port<PS>> {
Ok(self.client().register_port(name, spec)?)
}
}
/// This is a utility trait for things that may register or connect [Port]s.
/// It contains shorthand methods to this purpose. It's implemented for
/// `Arc<RwLock<JackConnection>>` for terse port registration in the
/// `init` callback of [JackClient::activate_with].
pub trait RegisterPort {
fn midi_in (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<MidiIn>>;
fn midi_out (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<MidiOut>>;
fn audio_in (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<AudioIn>>;
fn audio_out (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<AudioOut>>;
}
impl RegisterPort for Arc<RwLock<JackConnection>> {
fn midi_in (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<MidiIn>> {
let jack = self.read().unwrap();
let input = jack.client().register_port(name.as_ref(), MidiIn::default())?;
for port in connect.iter() {
let port = port.as_ref();
if let Some(output) = jack.port_by_name(port).as_ref() {
jack.client().connect_ports(output, &input)?;
} else {
panic!("Missing MIDI output: {port}. Use jack_lsp to list all port names.");
}
}
Ok(input)
}
fn midi_out (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<MidiOut>> {
let jack = self.read().unwrap();
let output = jack.client().register_port(name.as_ref(), MidiOut::default())?;
for port in connect.iter() {
let port = port.as_ref();
if let Some(input) = jack.port_by_name(port).as_ref() {
jack.client().connect_ports(&output, input)?;
} else {
panic!("Missing MIDI input: {port}. Use jack_lsp to list all port names.");
}
}
Ok(output)
}
fn audio_in (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<AudioIn>> {
let jack = self.read().unwrap();
let input = jack.client().register_port(name.as_ref(), AudioIn::default())?;
for port in connect.iter() {
let port = port.as_ref();
if let Some(output) = jack.port_by_name(port).as_ref() {
jack.client().connect_ports(output, &input)?;
} else {
panic!("Missing MIDI output: {port}. Use jack_lsp to list all port names.");
}
}
Ok(input)
}
fn audio_out (&self, name: impl AsRef<str>, connect: &[impl AsRef<str>]) -> Usually<Port<AudioOut>> {
let jack = self.read().unwrap();
let output = jack.client().register_port(name.as_ref(), AudioOut::default())?;
for port in connect.iter() {
let port = port.as_ref();
if let Some(input) = jack.port_by_name(port).as_ref() {
jack.client().connect_ports(&output, input)?;
} else {
panic!("Missing MIDI input: {port}. Use jack_lsp to list all port names.");
}
}
Ok(output)
}
}
#[derive(Debug, Clone, PartialEq)]
/// Event enum for JACK events.
pub enum JackEvent {
ThreadInit,
Shutdown(ClientStatus, Arc<str>),
Freewheel(bool),
SampleRate(Frames),
ClientRegistration(Arc<str>, bool),
PortRegistration(PortId, bool),
PortRename(PortId, Arc<str>, Arc<str>),
PortsConnected(PortId, PortId, bool),
GraphReorder,
XRun,
}
/// Generic notification handler that emits [JackEvent]
pub struct Notifications<T: Fn(JackEvent) + Send>(pub T);
impl<T: Fn(JackEvent) + Send> NotificationHandler for Notifications<T> {
fn thread_init(&self, _: &Client) {
self.0(JackEvent::ThreadInit);
}
unsafe fn shutdown(&mut self, status: ClientStatus, reason: &str) {
self.0(JackEvent::Shutdown(status, reason.into()));
}
fn freewheel(&mut self, _: &Client, enabled: bool) {
self.0(JackEvent::Freewheel(enabled));
}
fn sample_rate(&mut self, _: &Client, frames: Frames) -> Control {
self.0(JackEvent::SampleRate(frames));
Control::Quit
}
fn client_registration(&mut self, _: &Client, name: &str, reg: bool) {
self.0(JackEvent::ClientRegistration(name.into(), reg));
}
fn port_registration(&mut self, _: &Client, id: PortId, reg: bool) {
self.0(JackEvent::PortRegistration(id, reg));
}
fn port_rename(&mut self, _: &Client, id: PortId, old: &str, new: &str) -> Control {
self.0(JackEvent::PortRename(id, old.into(), new.into()));
Control::Continue
}
fn ports_connected(&mut self, _: &Client, a: PortId, b: PortId, are: bool) {
self.0(JackEvent::PortsConnected(a, b, are));
}
fn graph_reorder(&mut self, _: &Client) -> Control {
self.0(JackEvent::GraphReorder);
Control::Continue
}
fn xrun(&mut self, _: &Client) -> Control {
self.0(JackEvent::XRun);
Control::Continue
}
}
////////////////////////////////////////////////////////////////////////////////////
///// A [AudioComponent] bound to a JACK client and a set of ports.
//pub struct JackDevice<E: Engine> {
///// The active JACK client of this device.
//pub client: DynamicAsyncClient,
///// The device state, encapsulated for sharing between threads.
//pub state: Arc<RwLock<Box<dyn AudioComponent<E>>>>,
///// Unowned copies of the device's JACK ports, for connecting to the device.
///// The "real" readable/writable `Port`s are owned by the `state`.
//pub ports: UnownedJackPorts,
//}
//impl<E: Engine> std::fmt::Debug for JackDevice<E> {
//fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
//f.debug_struct("JackDevice")
//.field("ports", &self.ports)
//.finish()
//}
//}
//impl<E: Engine> Render for JackDevice<E> {
//type Engine = E;
//fn min_size(&self, to: E::Size) -> Perhaps<E::Size> {
//self.state.read().unwrap().layout(to)
//}
//fn render(&self, to: &mut E::Output) -> Usually<()> {
//self.state.read().unwrap().render(to)
//}
//}
//impl<E: Engine> Handle<E> for JackDevice<E> {
//fn handle(&mut self, from: &E::Input) -> Perhaps<E::Handled> {
//self.state.write().unwrap().handle(from)
//}
//}
//impl<E: Engine> Ports for JackDevice<E> {
//fn audio_ins(&self) -> Usually<Vec<&Port<Unowned>>> {
//Ok(self.ports.audio_ins.values().collect())
//}
//fn audio_outs(&self) -> Usually<Vec<&Port<Unowned>>> {
//Ok(self.ports.audio_outs.values().collect())
//}
//fn midi_ins(&self) -> Usually<Vec<&Port<Unowned>>> {
//Ok(self.ports.midi_ins.values().collect())
//}
//fn midi_outs(&self) -> Usually<Vec<&Port<Unowned>>> {
//Ok(self.ports.midi_outs.values().collect())
//}
//}
//impl<E: Engine> JackDevice<E> {
///// Returns a locked mutex of the state's contents.
//pub fn state(&self) -> LockResult<RwLockReadGuard<Box<dyn AudioComponent<E>>>> {
//self.state.read()
//}
///// Returns a locked mutex of the state's contents.
//pub fn state_mut(&self) -> LockResult<RwLockWriteGuard<Box<dyn AudioComponent<E>>>> {
//self.state.write()
//}
//pub fn connect_midi_in(&self, index: usize, port: &Port<Unowned>) -> Usually<()> {
//Ok(self
//.client
//.as_client()
//.connect_ports(port, self.midi_ins()?[index])?)
//}
//pub fn connect_midi_out(&self, index: usize, port: &Port<Unowned>) -> Usually<()> {
//Ok(self
//.client
//.as_client()
//.connect_ports(self.midi_outs()?[index], port)?)
//}
//pub fn connect_audio_in(&self, index: usize, port: &Port<Unowned>) -> Usually<()> {
//Ok(self
//.client
//.as_client()
//.connect_ports(port, self.audio_ins()?[index])?)
//}
//pub fn connect_audio_out(&self, index: usize, port: &Port<Unowned>) -> Usually<()> {
//Ok(self
//.client
//.as_client()
//.connect_ports(self.audio_outs()?[index], port)?)
//}
//}
///// Collection of JACK ports as [AudioIn]/[AudioOut]/[MidiIn]/[MidiOut].
//#[derive(Default, Debug)]
//pub struct JackPorts {
//pub audio_ins: BTreeMap<String, Port<AudioIn>>,
//pub midi_ins: BTreeMap<String, Port<MidiIn>>,
//pub audio_outs: BTreeMap<String, Port<AudioOut>>,
//pub midi_outs: BTreeMap<String, Port<MidiOut>>,
//}
///// Collection of JACK ports as [Unowned].
//#[derive(Default, Debug)]
//pub struct UnownedJackPorts {
//pub audio_ins: BTreeMap<String, Port<Unowned>>,
//pub midi_ins: BTreeMap<String, Port<Unowned>>,
//pub audio_outs: BTreeMap<String, Port<Unowned>>,
//pub midi_outs: BTreeMap<String, Port<Unowned>>,
//}
//impl JackPorts {
//pub fn clone_unowned(&self) -> UnownedJackPorts {
//let mut unowned = UnownedJackPorts::default();
//for (name, port) in self.midi_ins.iter() {
//unowned.midi_ins.insert(name.clone(), port.clone_unowned());
//}
//for (name, port) in self.midi_outs.iter() {
//unowned.midi_outs.insert(name.clone(), port.clone_unowned());
//}
//for (name, port) in self.audio_ins.iter() {
//unowned.audio_ins.insert(name.clone(), port.clone_unowned());
//}
//for (name, port) in self.audio_outs.iter() {
//unowned
//.audio_outs
//.insert(name.clone(), port.clone_unowned());
//}
//unowned
//}
//}
///// Implement the `Ports` trait.
//#[macro_export]
//macro_rules! ports {
//($T:ty $({ $(audio: {
//$(ins: |$ai_arg:ident|$ai_impl:expr,)?
//$(outs: |$ao_arg:ident|$ao_impl:expr,)?
//})? $(midi: {
//$(ins: |$mi_arg:ident|$mi_impl:expr,)?
//$(outs: |$mo_arg:ident|$mo_impl:expr,)?
//})?})?) => {
//impl Ports for $T {$(
//$(
//$(fn audio_ins <'a> (&'a self) -> Usually<Vec<&'a Port<Unowned>>> {
//let cb = |$ai_arg:&'a Self|$ai_impl;
//cb(self)
//})?
//)?
//$(
//$(fn audio_outs <'a> (&'a self) -> Usually<Vec<&'a Port<Unowned>>> {
//let cb = (|$ao_arg:&'a Self|$ao_impl);
//cb(self)
//})?
//)?
//)? $(
//$(
//$(fn midi_ins <'a> (&'a self) -> Usually<Vec<&'a Port<Unowned>>> {
//let cb = (|$mi_arg:&'a Self|$mi_impl);
//cb(self)
//})?
//)?
//$(
//$(fn midi_outs <'a> (&'a self) -> Usually<Vec<&'a Port<Unowned>>> {
//let cb = (|$mo_arg:&'a Self|$mo_impl);
//cb(self)
//})?
//)?
//)?}
//};
//}
///// `JackDevice` factory. Creates JACK `Client`s, performs port registration
///// and activation, and encapsulates a `AudioComponent` into a `JackDevice`.
//pub struct Jack {
//pub client: Client,
//pub midi_ins: Vec<String>,
//pub audio_ins: Vec<String>,
//pub midi_outs: Vec<String>,
//pub audio_outs: Vec<String>,
//}
//impl Jack {
//pub fn new(name: &str) -> Usually<Self> {
//Ok(Self {
//midi_ins: vec![],
//audio_ins: vec![],
//midi_outs: vec![],
//audio_outs: vec![],
//client: Client::new(name, ClientOptions::NO_START_SERVER)?.0,
//})
//}
//pub fn run<'a: 'static, D, E>(
//self,
//state: impl FnOnce(JackPorts) -> Box<D>,
//) -> Usually<JackDevice<E>>
//where
//D: AudioComponent<E> + Sized + 'static,
//E: Engine + 'static,
//{
//let owned_ports = JackPorts {
//audio_ins: register_ports(&self.client, self.audio_ins, AudioIn::default())?,
//audio_outs: register_ports(&self.client, self.audio_outs, AudioOut::default())?,
//midi_ins: register_ports(&self.client, self.midi_ins, MidiIn::default())?,
//midi_outs: register_ports(&self.client, self.midi_outs, MidiOut::default())?,
//};
//let midi_outs = owned_ports
//.midi_outs
//.values()
//.map(|p| Ok(p.name()?))
//.collect::<Usually<Vec<_>>>()?;
//let midi_ins = owned_ports
//.midi_ins
//.values()
//.map(|p| Ok(p.name()?))
//.collect::<Usually<Vec<_>>>()?;
//let audio_outs = owned_ports
//.audio_outs
//.values()
//.map(|p| Ok(p.name()?))
//.collect::<Usually<Vec<_>>>()?;
//let audio_ins = owned_ports
//.audio_ins
//.values()
//.map(|p| Ok(p.name()?))
//.collect::<Usually<Vec<_>>>()?;
//let state = Arc::new(RwLock::new(state(owned_ports) as Box<dyn AudioComponent<E>>));
//let client = self.client.activate_async(
//Notifications(Box::new({
//let _state = state.clone();
//move |_event| {
//// FIXME: this deadlocks
////state.lock().unwrap().handle(&event).unwrap();
//}
//}) as Box<dyn Fn(JackEvent) + Send + Sync>),
//ClosureProcessHandler::new(Box::new({
//let state = state.clone();
//move |c: &Client, s: &ProcessScope| state.write().unwrap().process(c, s)
//}) as BoxedAudioHandler),
//)?;
//Ok(JackDevice {
//ports: UnownedJackPorts {
//audio_ins: query_ports(&client.as_client(), audio_ins),
//audio_outs: query_ports(&client.as_client(), audio_outs),
//midi_ins: query_ports(&client.as_client(), midi_ins),
//midi_outs: query_ports(&client.as_client(), midi_outs),
//},
//client,
//state,
//})
//}
//pub fn audio_in(mut self, name: &str) -> Self {
//self.audio_ins.push(name.to_string());
//self
//}
//pub fn audio_out(mut self, name: &str) -> Self {
//self.audio_outs.push(name.to_string());
//self
//}
//pub fn midi_in(mut self, name: &str) -> Self {
//self.midi_ins.push(name.to_string());
//self
//}
//pub fn midi_out(mut self, name: &str) -> Self {
//self.midi_outs.push(name.to_string());
//self
//}
//}
///// A UI component that may be associated with a JACK client by the `Jack` factory.
//pub trait AudioComponent<E: Engine>: Component<E> + Audio {
///// Perform type erasure for collecting heterogeneous devices.
//fn boxed(self) -> Box<dyn AudioComponent<E>>
//where
//Self: Sized + 'static,
//{
//Box::new(self)
//}
//}
///// All things that implement the required traits can be treated as `AudioComponent`.
//impl<E: Engine, W: Component<E> + Audio> AudioComponent<E> for W {}
/////////
/*
/// Trait for things that may expose JACK ports.
pub trait Ports {
fn audio_ins(&self) -> Usually<Vec<&Port<Unowned>>> {
Ok(vec![])
}
fn audio_outs(&self) -> Usually<Vec<&Port<Unowned>>> {
Ok(vec![])
}
fn midi_ins(&self) -> Usually<Vec<&Port<Unowned>>> {
Ok(vec![])
}
fn midi_outs(&self) -> Usually<Vec<&Port<Unowned>>> {
Ok(vec![])
}
}
fn register_ports<T: PortSpec + Copy>(
client: &Client,
names: Vec<String>,
spec: T,
) -> Usually<BTreeMap<String, Port<T>>> {
names
.into_iter()
.try_fold(BTreeMap::new(), |mut ports, name| {
let port = client.register_port(&name, spec)?;
ports.insert(name, port);
Ok(ports)
})
}
fn query_ports(client: &Client, names: Vec<String>) -> BTreeMap<String, Port<Unowned>> {
names.into_iter().fold(BTreeMap::new(), |mut ports, name| {
let port = client.port_by_name(&name).unwrap();
ports.insert(name, port);
ports
})
}
*/

View file

@ -24,6 +24,8 @@ pub(crate) use ::tek_tui::{
buffer::Cell,
}
};
pub use ::tek_jack;
pub(crate) use ::tek_jack::{*, jack::{*, contrib::*}};
pub(crate) use std::cmp::{Ord, Eq, PartialEq};
pub(crate) use std::collections::BTreeMap;
@ -40,14 +42,10 @@ pub(crate) use std::thread::{spawn, JoinHandle};
pub(crate) use std::time::Duration;
pub mod arranger; pub use self::arranger::*;
pub mod clock; pub use self::clock::*;
pub mod field; pub use self::field::*;
pub mod file; pub use self::file::*;
pub mod focus; pub use self::focus::*;
pub mod groovebox; pub use self::groovebox::*;
pub mod jack; pub use self::jack::*;
pub mod meter; pub use self::meter::*;
pub mod midi; pub use self::midi::*;
pub mod mixer; pub use self::mixer::*;
pub mod piano; pub use self::piano::*;
pub mod plugin; pub use self::plugin::*;
@ -55,9 +53,6 @@ pub mod pool; pub use self::pool::*;
pub mod sampler; pub use self::sampler::*;
pub mod sequencer; pub use self::sequencer::*;
pub use ::atomic_float;
pub(crate) use atomic_float::*;
pub use ::midly::{self, num::u7};
pub(crate) use ::midly::{
Smf,
@ -73,37 +68,6 @@ testmod! { test }
($($name:ident)*) => { $(#[cfg(test)] mod $name;)* };
}
pub trait Gettable<T> {
/// Returns current value
fn get (&self) -> T;
}
pub trait Mutable<T>: Gettable<T> {
/// Sets new value, returns old
fn set (&mut self, value: T) -> T;
}
pub trait InteriorMutable<T>: Gettable<T> {
/// Sets new value, returns old
fn set (&self, value: T) -> T;
}
impl Gettable<bool> for AtomicBool {
fn get (&self) -> bool { self.load(Relaxed) }
}
impl InteriorMutable<bool> for AtomicBool {
fn set (&self, value: bool) -> bool { self.swap(value, Relaxed) }
}
impl Gettable<usize> for AtomicUsize {
fn get (&self) -> usize { self.load(Relaxed) }
}
impl InteriorMutable<usize> for AtomicUsize {
fn set (&self, value: usize) -> usize { self.swap(value, Relaxed) }
}
#[derive(Default)]
pub struct BigBuffer {
pub width: usize,

View file

@ -1,41 +0,0 @@
use crate::*;
pub(crate) mod midi_pool; pub(crate) use midi_pool::*;
pub(crate) mod midi_clip; pub(crate) use midi_clip::*;
pub(crate) mod midi_launch; pub(crate) use midi_launch::*;
pub(crate) mod midi_player; pub(crate) use midi_player::*;
pub(crate) mod midi_in; pub(crate) use midi_in::*;
pub(crate) mod midi_out; pub(crate) use midi_out::*;
pub(crate) mod midi_note; pub(crate) use midi_note::*;
pub(crate) mod midi_range; pub(crate) use midi_range::*;
pub(crate) mod midi_point; pub(crate) use midi_point::*;
pub(crate) mod midi_view; pub(crate) use midi_view::*;
pub(crate) mod midi_editor; pub(crate) use midi_editor::*;
/// Add "all notes off" to the start of a buffer.
pub fn all_notes_off (output: &mut [Vec<Vec<u8>>]) {
let mut buf = vec![];
let msg = MidiMessage::Controller { controller: 123.into(), value: 0.into() };
let evt = LiveEvent::Midi { channel: 0.into(), message: msg };
evt.write(&mut buf).unwrap();
output[0].push(buf);
}
/// Return boxed iterator of MIDI events
pub fn parse_midi_input (input: MidiIter) -> Box<dyn Iterator<Item=(usize, LiveEvent, &[u8])> + '_> {
Box::new(input.map(|RawMidi { time, bytes }|(
time as usize,
LiveEvent::parse(bytes).unwrap(),
bytes
)))
}
/// Update notes_in array
pub fn update_keys (keys: &mut[bool;128], message: &MidiMessage) {
match message {
MidiMessage::NoteOn { key, .. } => { keys[key.as_int() as usize] = true; }
MidiMessage::NoteOff { key, .. } => { keys[key.as_int() as usize] = false; },
_ => {}
}
}

View file

@ -1,109 +0,0 @@
use crate::*;
pub trait HasMidiClip {
fn phrase (&self) -> &Arc<RwLock<MidiClip>>;
}
#[macro_export] macro_rules! has_phrase {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasMidiClip for $Struct $(<$($L),*$($T),*>)? {
fn phrase (&$self) -> &Arc<RwLock<MidiClip>> { &$cb }
}
}
}
/// A MIDI sequence.
#[derive(Debug, Clone)]
pub struct MidiClip {
pub uuid: uuid::Uuid,
/// Name of phrase
pub name: Arc<str>,
/// Temporal resolution in pulses per quarter note
pub ppq: usize,
/// Length of phrase in pulses
pub length: usize,
/// Notes in phrase
pub notes: MidiData,
/// Whether to loop the phrase or play it once
pub looped: bool,
/// Start of loop
pub loop_start: usize,
/// Length of loop
pub loop_length: usize,
/// All notes are displayed with minimum length
pub percussive: bool,
/// Identifying color of phrase
pub color: ItemPalette,
}
/// MIDI message structural
pub type MidiData = Vec<Vec<MidiMessage>>;
impl MidiClip {
pub fn new (
name: impl AsRef<str>,
looped: bool,
length: usize,
notes: Option<MidiData>,
color: Option<ItemPalette>,
) -> Self {
Self {
uuid: uuid::Uuid::new_v4(),
name: name.as_ref().into(),
ppq: PPQ,
length,
notes: notes.unwrap_or(vec![Vec::with_capacity(16);length]),
looped,
loop_start: 0,
loop_length: length,
percussive: true,
color: color.unwrap_or_else(ItemPalette::random)
}
}
pub fn set_length (&mut self, length: usize) {
self.length = length;
self.notes = vec![Vec::with_capacity(16);length];
}
pub fn duplicate (&self) -> Self {
let mut clone = self.clone();
clone.uuid = uuid::Uuid::new_v4();
clone
}
pub fn toggle_loop (&mut self) { self.looped = !self.looped; }
pub fn record_event (&mut self, pulse: usize, message: MidiMessage) {
if pulse >= self.length { panic!("extend phrase first") }
self.notes[pulse].push(message);
}
/// Check if a range `start..end` contains MIDI Note On `k`
pub fn contains_note_on (&self, k: u7, start: usize, end: usize) -> bool {
for events in self.notes[start.max(0)..end.min(self.notes.len())].iter() {
for event in events.iter() {
if let MidiMessage::NoteOn {key,..} = event { if *key == k { return true } }
}
}
false
}
}
impl Default for MidiClip {
fn default () -> Self {
Self::new(
"Stop",
false,
1,
Some(vec![vec![MidiMessage::Controller {
controller: 123.into(),
value: 0.into()
}]]),
Some(ItemColor::from(Color::Rgb(32, 32, 32)).into())
)
}
}
impl PartialEq for MidiClip {
fn eq (&self, other: &Self) -> bool {
self.uuid == other.uuid
}
}
impl Eq for MidiClip {}

View file

@ -1,245 +0,0 @@
use crate::*;
use KeyCode::{Char, Up, Down, Left, Right, Enter};
use MidiEditCommand::*;
pub trait HasEditor {
fn editor (&self) -> &MidiEditor;
}
#[macro_export] macro_rules! has_editor {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasEditor for $Struct $(<$($L),*$($T),*>)? {
fn editor (&$self) -> &MidiEditor { &$cb }
}
}
}
/// Contains state for viewing and editing a phrase
pub struct MidiEditor {
pub mode: PianoHorizontal,
pub size: Measure<TuiOut>
}
from!(|phrase: &Arc<RwLock<MidiClip>>|MidiEditor = {
let mut model = Self::from(Some(phrase.clone()));
model.redraw();
model
});
from!(|phrase: Option<Arc<RwLock<MidiClip>>>|MidiEditor = {
let mut model = Self::default();
*model.phrase_mut() = phrase;
model.redraw();
model
});
impl Default for MidiEditor {
fn default () -> Self {
let mut mode = PianoHorizontal::new(None);
mode.redraw();
Self { mode, size: Measure::new() }
}
}
has_size!(<TuiOut>|self: MidiEditor|&self.size);
render!(TuiOut: (self: MidiEditor) => {
self.autoscroll();
self.autozoom();
Fill::xy(Bsp::b(&self.size, &self.mode))
});
impl TimeRange for MidiEditor {
fn time_len (&self) -> &AtomicUsize { self.mode.time_len() }
fn time_zoom (&self) -> &AtomicUsize { self.mode.time_zoom() }
fn time_lock (&self) -> &AtomicBool { self.mode.time_lock() }
fn time_start (&self) -> &AtomicUsize { self.mode.time_start() }
fn time_axis (&self) -> &AtomicUsize { self.mode.time_axis() }
}
impl NoteRange for MidiEditor {
fn note_lo (&self) -> &AtomicUsize { self.mode.note_lo() }
fn note_axis (&self) -> &AtomicUsize { self.mode.note_axis() }
}
impl NotePoint for MidiEditor {
fn note_len (&self) -> usize { self.mode.note_len() }
fn set_note_len (&self, x: usize) { self.mode.set_note_len(x) }
fn note_point (&self) -> usize { self.mode.note_point() }
fn set_note_point (&self, x: usize) { self.mode.set_note_point(x) }
}
impl TimePoint for MidiEditor {
fn time_point (&self) -> usize { self.mode.time_point() }
fn set_time_point (&self, x: usize) { self.mode.set_time_point(x) }
}
impl MidiViewer for MidiEditor {
fn buffer_size (&self, phrase: &MidiClip) -> (usize, usize) {
self.mode.buffer_size(phrase)
}
fn redraw (&self) {
self.mode.redraw()
}
fn phrase (&self) -> &Option<Arc<RwLock<MidiClip>>> {
self.mode.phrase()
}
fn phrase_mut (&mut self) -> &mut Option<Arc<RwLock<MidiClip>>> {
self.mode.phrase_mut()
}
fn set_phrase (&mut self, phrase: Option<&Arc<RwLock<MidiClip>>>) {
self.mode.set_phrase(phrase)
}
}
impl MidiEditor {
/// Put note at current position
pub fn put_note (&mut self, advance: bool) {
let mut redraw = false;
if let Some(phrase) = self.phrase() {
let mut phrase = phrase.write().unwrap();
let note_start = self.time_point();
let note_point = self.note_point();
let note_len = self.note_len();
let note_end = note_start + (note_len.saturating_sub(1));
let key: u7 = u7::from(note_point as u8);
let vel: u7 = 100.into();
let length = phrase.length;
let note_end = note_end % length;
let note_on = MidiMessage::NoteOn { key, vel };
if !phrase.notes[note_start].iter().any(|msg|*msg == note_on) {
phrase.notes[note_start].push(note_on);
}
let note_off = MidiMessage::NoteOff { key, vel };
if !phrase.notes[note_end].iter().any(|msg|*msg == note_off) {
phrase.notes[note_end].push(note_off);
}
if advance {
self.set_time_point(note_end);
}
redraw = true;
}
if redraw {
self.mode.redraw();
}
}
pub fn clip_status (&self) -> impl Content<TuiOut> + '_ {
let (color, name, length, looped) = if let Some(phrase) = self.phrase().as_ref().map(|p|p.read().unwrap()) {
(phrase.color, phrase.name.clone(), phrase.length, phrase.looped)
} else {
(ItemPalette::from(TuiTheme::g(64)), String::new().into(), 0, false)
};
row!(
FieldV(color, "Edit", format!("{name} ({length})")),
FieldV(color, "Loop", looped.to_string())
)
}
pub fn edit_status (&self) -> impl Content<TuiOut> + '_ {
let (color, name, length, looped) = if let Some(phrase) = self.phrase().as_ref().map(|p|p.read().unwrap()) {
(phrase.color, phrase.name.clone(), phrase.length, phrase.looped)
} else {
(ItemPalette::from(TuiTheme::g(64)), String::new().into(), 0, false)
};
let time_point = self.time_point();
let time_start = self.time_start();
let time_end = self.time_end();
let time_axis = self.time_axis().get();
let time_zoom = self.time_zoom().get();
let time_lock = if self.time_lock().get() { "[lock]" } else { " " };
let time_field = FieldV(color, "Time", format!("{length}/{time_zoom}+{time_point} {time_lock}"));
let note_point = format!("{:>3}", self.note_point());
let note_name = format!("{:4}", Note::pitch_to_name(self.note_point()));
let note_len = format!("{:>4}", self.note_len());;;;
let note_field = FieldV(color, "Note", format!("{note_name} {note_point} {note_len}"));
Bsp::e(time_field, note_field,)
}
}
impl std::fmt::Debug for MidiEditor {
fn fmt (&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
f.debug_struct("MidiEditor")
.field("mode", &self.mode)
.finish()
}
}
#[derive(Clone, Debug)]
pub enum MidiEditCommand {
// TODO: 1-9 seek markers that by default start every 8th of the phrase
AppendNote,
PutNote,
SetNoteCursor(usize),
SetNoteLength(usize),
SetNoteScroll(usize),
SetTimeCursor(usize),
SetTimeScroll(usize),
SetTimeZoom(usize),
SetTimeLock(bool),
Show(Option<Arc<RwLock<MidiClip>>>),
}
handle!(TuiIn: |self: MidiEditor, input|MidiEditCommand::execute_with_state(self, input.event()));
keymap!(KEYS_MIDI_EDITOR = |s: MidiEditor, _input: Event| MidiEditCommand {
key(Up) => SetNoteCursor(s.note_point() + 1),
key(Char('w')) => SetNoteCursor(s.note_point() + 1),
key(Down) => SetNoteCursor(s.note_point().saturating_sub(1)),
key(Char('s')) => SetNoteCursor(s.note_point().saturating_sub(1)),
key(Left) => SetTimeCursor(s.time_point().saturating_sub(s.note_len())),
key(Char('a')) => SetTimeCursor(s.time_point().saturating_sub(s.note_len())),
key(Right) => SetTimeCursor((s.time_point() + s.note_len()) % s.phrase_length()),
ctrl(alt(key(Up))) => SetNoteScroll(s.note_point() + 3),
ctrl(alt(key(Down))) => SetNoteScroll(s.note_point().saturating_sub(3)),
ctrl(alt(key(Left))) => SetTimeScroll(s.time_point().saturating_sub(s.time_zoom().get())),
ctrl(alt(key(Right))) => SetTimeScroll((s.time_point() + s.time_zoom().get()) % s.phrase_length()),
ctrl(key(Up)) => SetNoteScroll(s.note_lo().get() + 1),
ctrl(key(Down)) => SetNoteScroll(s.note_lo().get().saturating_sub(1)),
ctrl(key(Left)) => SetTimeScroll(s.time_start().get().saturating_sub(s.note_len())),
ctrl(key(Right)) => SetTimeScroll(s.time_start().get() + s.note_len()),
alt(key(Up)) => SetNoteCursor(s.note_point() + 3),
alt(key(Down)) => SetNoteCursor(s.note_point().saturating_sub(3)),
alt(key(Left)) => SetTimeCursor(s.time_point().saturating_sub(s.time_zoom().get())),
alt(key(Right)) => SetTimeCursor((s.time_point() + s.time_zoom().get()) % s.phrase_length()),
key(Char('d')) => SetTimeCursor((s.time_point() + s.note_len()) % s.phrase_length()),
key(Char('z')) => SetTimeLock(!s.time_lock().get()),
key(Char('-')) => SetTimeZoom(if s.time_lock().get() { s.time_zoom().get() } else { Note::next(s.time_zoom().get()) }),
key(Char('_')) => SetTimeZoom(if s.time_lock().get() { s.time_zoom().get() } else { Note::next(s.time_zoom().get()) }),
key(Char('=')) => SetTimeZoom(if s.time_lock().get() { s.time_zoom().get() } else { Note::prev(s.time_zoom().get()) }),
key(Char('+')) => SetTimeZoom(if s.time_lock().get() { s.time_zoom().get() } else { Note::prev(s.time_zoom().get()) }),
key(Enter) => PutNote,
ctrl(key(Enter)) => AppendNote,
key(Char(',')) => SetNoteLength(Note::prev(s.note_len())),
key(Char('.')) => SetNoteLength(Note::next(s.note_len())),
key(Char('<')) => SetNoteLength(Note::prev(s.note_len())),
key(Char('>')) => SetNoteLength(Note::next(s.note_len())),
//// TODO: kpat!(Char('/')) => // toggle 3plet
//// TODO: kpat!(Char('?')) => // toggle dotted
});
impl MidiEditor {
fn phrase_length (&self) -> usize {
self.phrase().as_ref().map(|p|p.read().unwrap().length).unwrap_or(1)
}
}
impl Command<MidiEditor> for MidiEditCommand {
fn execute (self, state: &mut MidiEditor) -> Perhaps<Self> {
use MidiEditCommand::*;
match self {
Show(phrase) => { state.set_phrase(phrase.as_ref()); },
PutNote => { state.put_note(false); },
AppendNote => { state.put_note(true); },
SetTimeZoom(x) => { state.time_zoom().set(x); state.redraw(); },
SetTimeLock(x) => { state.time_lock().set(x); },
SetTimeScroll(x) => { state.time_start().set(x); },
SetNoteScroll(x) => { state.note_lo().set(x.min(127)); },
SetNoteLength(x) => { state.set_note_len(x); },
SetTimeCursor(x) => { state.set_time_point(x); },
SetNoteCursor(note) => { state.set_note_point(note.min(127)); },
_ => todo!("{:?}", self)
}
Ok(None)
}
}

View file

@ -1,91 +0,0 @@
use crate::*;
/// Trait for thing that may receive MIDI.
pub trait HasMidiIns {
fn midi_ins (&self) -> &Vec<Port<MidiIn>>;
fn midi_ins_mut (&mut self) -> &mut Vec<Port<MidiIn>>;
fn has_midi_ins (&self) -> bool {
!self.midi_ins().is_empty()
}
}
pub trait MidiRecordApi: HasClock + HasPlayPhrase + HasMidiIns {
fn notes_in (&self) -> &Arc<RwLock<[bool;128]>>;
fn recording (&self) -> bool;
fn recording_mut (&mut self) -> &mut bool;
fn toggle_record (&mut self) {
*self.recording_mut() = !self.recording();
}
fn monitoring (&self) -> bool;
fn monitoring_mut (&mut self) -> &mut bool;
fn toggle_monitor (&mut self) {
*self.monitoring_mut() = !self.monitoring();
}
fn monitor (&mut self, scope: &ProcessScope, midi_buf: &mut Vec<Vec<Vec<u8>>>) {
// For highlighting keys and note repeat
let notes_in = self.notes_in().clone();
let monitoring = self.monitoring();
for input in self.midi_ins_mut().iter() {
for (sample, event, bytes) in parse_midi_input(input.iter(scope)) {
if let LiveEvent::Midi { message, .. } = event {
if monitoring {
midi_buf[sample].push(bytes.to_vec());
}
update_keys(&mut notes_in.write().unwrap(), &message);
}
}
}
}
fn record (&mut self, scope: &ProcessScope, midi_buf: &mut Vec<Vec<Vec<u8>>>) {
if self.monitoring() {
self.monitor(scope, midi_buf);
}
if !self.clock().is_rolling() {
return
}
if let Some((started, ref clip)) = self.play_phrase().clone() {
self.record_clip(scope, started, clip, midi_buf);
}
if let Some((start_at, phrase)) = &self.next_phrase() {
self.record_next();
}
}
fn record_clip (
&mut self,
scope: &ProcessScope,
started: Moment,
phrase: &Option<Arc<RwLock<MidiClip>>>,
midi_buf: &mut Vec<Vec<Vec<u8>>>
) {
if let Some(phrase) = phrase {
let sample0 = scope.last_frame_time() as usize;
let start = started.sample.get() as usize;
let recording = self.recording();
let timebase = self.clock().timebase().clone();
let quant = self.clock().quant.get();
let mut phrase = phrase.write().unwrap();
let length = phrase.length;
for input in self.midi_ins_mut().iter() {
for (sample, event, bytes) in parse_midi_input(input.iter(scope)) {
if let LiveEvent::Midi { message, .. } = event {
phrase.record_event({
let sample = (sample0 + sample - start) as f64;
let pulse = timebase.samples_to_pulse(sample);
let quantized = (pulse / quant).round() * quant;
quantized as usize % length
}, message);
}
}
}
}
}
fn record_next (&mut self) {
// TODO switch to next clip and record into it
}
fn overdub (&self) -> bool;
fn overdub_mut (&mut self) -> &mut bool;
fn toggle_overdub (&mut self) {
*self.overdub_mut() = !self.overdub();
}
}

View file

@ -1,35 +0,0 @@
use crate::*;
pub trait HasPlayPhrase: HasClock {
fn reset (&self) -> bool;
fn reset_mut (&mut self) -> &mut bool;
fn play_phrase (&self) -> &Option<(Moment, Option<Arc<RwLock<MidiClip>>>)>;
fn play_phrase_mut (&mut self) -> &mut Option<(Moment, Option<Arc<RwLock<MidiClip>>>)>;
fn next_phrase (&self) -> &Option<(Moment, Option<Arc<RwLock<MidiClip>>>)>;
fn next_phrase_mut (&mut self) -> &mut Option<(Moment, Option<Arc<RwLock<MidiClip>>>)>;
fn pulses_since_start (&self) -> Option<f64> {
if let Some((started, Some(_))) = self.play_phrase().as_ref() {
let elapsed = self.clock().playhead.pulse.get() - started.pulse.get();
Some(elapsed)
} else {
None
}
}
fn pulses_since_start_looped (&self) -> Option<(f64, f64)> {
if let Some((started, Some(phrase))) = self.play_phrase().as_ref() {
let elapsed = self.clock().playhead.pulse.get() - started.pulse.get();
let length = phrase.read().unwrap().length.max(1); // prevent div0 on empty phrase
let times = (elapsed as usize / length) as f64;
let elapsed = (elapsed as usize % length) as f64;
Some((times, elapsed))
} else {
None
}
}
fn enqueue_next (&mut self, phrase: Option<&Arc<RwLock<MidiClip>>>) {
let start = self.clock().next_launch_pulse() as f64;
let instant = Moment::from_pulse(self.clock().timebase(), start);
*self.next_phrase_mut() = Some((instant, phrase.cloned()));
*self.reset_mut() = true;
}
}

View file

@ -1,56 +0,0 @@
use crate::*;
pub struct Note;
impl Note {
pub const NAMES: [&str; 128] = [
"C0", "C#0", "D0", "D#0", "E0", "F0", "F#0", "G0", "G#0", "A0", "A#0", "B0",
"C1", "C#1", "D1", "D#1", "E1", "F1", "F#1", "G1", "G#1", "A1", "A#1", "B1",
"C2", "C#2", "D2", "D#2", "E2", "F2", "F#2", "G2", "G#2", "A2", "A#2", "B2",
"C3", "C#3", "D3", "D#3", "E3", "F3", "F#3", "G3", "G#3", "A3", "A#3", "B3",
"C4", "C#4", "D4", "D#4", "E4", "F4", "F#4", "G4", "G#4", "A4", "A#4", "B4",
"C5", "C#5", "D5", "D#5", "E5", "F5", "F#5", "G5", "G#5", "A5", "A#5", "B5",
"C6", "C#6", "D6", "D#6", "E6", "F6", "F#6", "G6", "G#6", "A6", "A#6", "B6",
"C7", "C#7", "D7", "D#7", "E7", "F7", "F#7", "G7", "G#7", "A7", "A#7", "B7",
"C8", "C#8", "D8", "D#8", "E8", "F8", "F#8", "G8", "G#8", "A8", "A#8", "B8",
"C9", "C#9", "D9", "D#9", "E9", "F9", "F#9", "G9", "G#9", "A9", "A#9", "B9",
"C10", "C#10", "D10", "D#10", "E10", "F10", "F#10", "G10",
];
pub fn pitch_to_name (n: usize) -> &'static str {
if n > 127 {
panic!("to_note_name({n}): must be 0-127");
}
Self::NAMES[n]
}
/// (pulses, name), assuming 96 PPQ
pub const DURATIONS: [(usize, &str);26] = [
(1, "1/384"), (2, "1/192"),
(3, "1/128"), (4, "1/96"),
(6, "1/64"), (8, "1/48"),
(12, "1/32"), (16, "1/24"),
(24, "1/16"), (32, "1/12"),
(48, "1/8"), (64, "1/6"),
(96, "1/4"), (128, "1/3"),
(192, "1/2"), (256, "2/3"),
(384, "1/1"), (512, "4/3"),
(576, "3/2"), (768, "2/1"),
(1152, "3/1"), (1536, "4/1"),
(2304, "6/1"), (3072, "8/1"),
(3456, "9/1"), (6144, "16/1"),
];
/// Returns the next shorter length
pub fn prev (pulses: usize) -> usize {
for (length, _) in Self::DURATIONS.iter().rev() { if *length < pulses { return *length } }
pulses
}
/// Returns the next longer length
pub fn next (pulses: usize) -> usize {
for (length, _) in Self::DURATIONS.iter() { if *length > pulses { return *length } }
pulses
}
pub fn pulses_to_name (pulses: usize) -> &'static str {
for (length, name) in Self::DURATIONS.iter() { if *length == pulses { return name } }
""
}
}

View file

@ -1,160 +0,0 @@
use crate::*;
/// Trait for thing that may output MIDI.
pub trait HasMidiOuts {
fn midi_outs (&self) -> &Vec<Port<MidiOut>>;
fn midi_outs_mut (&mut self) -> &mut Vec<Port<MidiOut>>;
fn has_midi_outs (&self) -> bool {
!self.midi_outs().is_empty()
}
/// Buffer for serializing a MIDI event. FIXME rename
fn midi_note (&mut self) -> &mut Vec<u8>;
}
pub trait MidiPlaybackApi: HasPlayPhrase + HasClock + HasMidiOuts {
fn notes_out (&self) -> &Arc<RwLock<[bool;128]>>;
/// Clear the section of the output buffer that we will be using,
/// emitting "all notes off" at start of buffer if requested.
fn clear (
&mut self, scope: &ProcessScope, out: &mut [Vec<Vec<u8>>], reset: bool
) {
for frame in &mut out[0..scope.n_frames() as usize] {
frame.clear();
}
if reset {
all_notes_off(out);
}
}
/// Output notes from phrase to MIDI output ports.
fn play (
&mut self, scope: &ProcessScope, note_buf: &mut Vec<u8>, out: &mut [Vec<Vec<u8>>]
) -> bool {
if !self.clock().is_rolling() {
return false
}
// If a phrase is playing, write a chunk of MIDI events from it to the output buffer.
// If no phrase is playing, prepare for switchover immediately.
self.play_phrase().as_ref().map_or(true, |(started, phrase)|{
self.play_chunk(scope, note_buf, out, started, phrase)
})
}
/// Handle switchover from current to next playing phrase.
fn switchover (
&mut self, scope: &ProcessScope, note_buf: &mut Vec<u8>, out: &mut [Vec<Vec<u8>>]
) {
if !self.clock().is_rolling() {
return
}
let sample0 = scope.last_frame_time() as usize;
//let samples = scope.n_frames() as usize;
if let Some((start_at, phrase)) = &self.next_phrase() {
let start = start_at.sample.get() as usize;
let sample = self.clock().started.read().unwrap()
.as_ref().unwrap().sample.get() as usize;
// If it's time to switch to the next phrase:
if start <= sample0.saturating_sub(sample) {
// Samples elapsed since phrase was supposed to start
let _skipped = sample0 - start;
// Switch over to enqueued phrase
let started = Moment::from_sample(self.clock().timebase(), start as f64);
// Launch enqueued phrase
*self.play_phrase_mut() = Some((started, phrase.clone()));
// Unset enqueuement (TODO: where to implement looping?)
*self.next_phrase_mut() = None;
// Fill in remaining ticks of chunk from next phrase.
self.play(scope, note_buf, out);
}
}
}
fn play_chunk (
&self,
scope: &ProcessScope,
note_buf: &mut Vec<u8>,
out: &mut [Vec<Vec<u8>>],
started: &Moment,
phrase: &Option<Arc<RwLock<MidiClip>>>
) -> bool {
// First sample to populate. Greater than 0 means that the first
// pulse of the phrase falls somewhere in the middle of the chunk.
let sample = (scope.last_frame_time() as usize).saturating_sub(
started.sample.get() as usize +
self.clock().started.read().unwrap().as_ref().unwrap().sample.get() as usize
);
// Iterator that emits sample (index into output buffer at which to write MIDI event)
// paired with pulse (index into phrase from which to take the MIDI event) for each
// sample of the output buffer that corresponds to a MIDI pulse.
let pulses = self.clock().timebase().pulses_between_samples(sample, sample + scope.n_frames() as usize);
// Notes active during current chunk.
let notes = &mut self.notes_out().write().unwrap();
let length = phrase.as_ref().map_or(0, |p|p.read().unwrap().length);
for (sample, pulse) in pulses {
// If a next phrase is enqueued, and we're past the end of the current one,
// break the loop here (FIXME count pulse correctly)
let past_end = if phrase.is_some() { pulse >= length } else { true };
if self.next_phrase().is_some() && past_end {
return true
}
// If there's a currently playing phrase, output notes from it to buffer:
if let Some(ref phrase) = phrase {
Self::play_pulse(phrase, pulse, sample, note_buf, out, notes)
}
}
false
}
fn play_pulse (
phrase: &RwLock<MidiClip>,
pulse: usize,
sample: usize,
note_buf: &mut Vec<u8>,
out: &mut [Vec<Vec<u8>>],
notes: &mut [bool;128]
) {
// Source phrase from which the MIDI events will be taken.
let phrase = phrase.read().unwrap();
// Phrase with zero length is not processed
if phrase.length > 0 {
// Current pulse index in source phrase
let pulse = pulse % phrase.length;
// Output each MIDI event from phrase at appropriate frames of output buffer:
for message in phrase.notes[pulse].iter() {
// Clear output buffer for this MIDI event.
note_buf.clear();
// TODO: support MIDI channels other than CH1.
let channel = 0.into();
// Serialize MIDI event into message buffer.
LiveEvent::Midi { channel, message: *message }
.write(note_buf)
.unwrap();
// Append serialized message to output buffer.
out[sample].push(note_buf.clone());
// Update the list of currently held notes.
update_keys(&mut*notes, message);
}
}
}
/// Write a chunk of MIDI data from the output buffer to all assigned output ports.
fn write (&mut self, scope: &ProcessScope, out: &[Vec<Vec<u8>>]) {
let samples = scope.n_frames() as usize;
for port in self.midi_outs_mut().iter_mut() {
Self::write_port(&mut port.writer(scope), samples, out)
}
}
/// Write a chunk of MIDI data from the output buffer to an output port.
fn write_port (writer: &mut MidiWriter, samples: usize, out: &[Vec<Vec<u8>>]) {
for (time, events) in out.iter().enumerate().take(samples) {
for bytes in events.iter() {
writer.write(&RawMidi { time: time as u32, bytes }).unwrap_or_else(|_|{
panic!("Failed to write MIDI data: {bytes:?}");
});
}
}
}
}

View file

@ -1,280 +0,0 @@
use crate::*;
pub trait MidiPlayerApi: MidiRecordApi + MidiPlaybackApi + Send + Sync {}
impl MidiPlayerApi for MidiPlayer {}
pub trait HasPlayer {
fn player (&self) -> &impl MidiPlayerApi;
fn player_mut (&mut self) -> &mut impl MidiPlayerApi;
}
#[macro_export] macro_rules! has_player {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasPlayer for $Struct $(<$($L),*$($T),*>)? {
fn player (&$self) -> &impl MidiPlayerApi { &$cb }
fn player_mut (&mut $self) -> &mut impl MidiPlayerApi { &mut$cb }
}
}
}
/// Contains state for playing a phrase
pub struct MidiPlayer {
/// State of clock and playhead
pub(crate) clock: Clock,
/// Start time and phrase being played
pub(crate) play_phrase: Option<(Moment, Option<Arc<RwLock<MidiClip>>>)>,
/// Start time and next phrase
pub(crate) next_phrase: Option<(Moment, Option<Arc<RwLock<MidiClip>>>)>,
/// Play input through output.
pub(crate) monitoring: bool,
/// Write input to sequence.
pub(crate) recording: bool,
/// Overdub input to sequence.
pub(crate) overdub: bool,
/// Send all notes off
pub(crate) reset: bool, // TODO?: after Some(nframes)
/// Record from MIDI ports to current sequence.
pub midi_ins: Vec<Port<MidiIn>>,
/// Play from current sequence to MIDI ports
pub midi_outs: Vec<Port<MidiOut>>,
/// Notes currently held at input
pub(crate) notes_in: Arc<RwLock<[bool; 128]>>,
/// Notes currently held at output
pub(crate) notes_out: Arc<RwLock<[bool; 128]>>,
/// MIDI output buffer
pub note_buf: Vec<u8>,
}
impl MidiPlayer {
pub fn new (
jack: &Arc<RwLock<JackConnection>>,
name: impl AsRef<str>,
midi_from: &[impl AsRef<str>],
midi_to: &[impl AsRef<str>],
) -> Usually<Self> {
let name = name.as_ref();
let midi_in = jack.midi_in(&format!("M/{name}"), midi_from)?;
let midi_out = jack.midi_out(&format!("{name}/M"), midi_to)?;
Ok(Self {
clock: Clock::from(jack),
play_phrase: None,
next_phrase: None,
recording: false,
monitoring: false,
overdub: false,
notes_in: RwLock::new([false;128]).into(),
midi_ins: vec![midi_in],
midi_outs: vec![midi_out],
notes_out: RwLock::new([false;128]).into(),
reset: true,
note_buf: vec![0;8],
})
}
pub fn play_status (&self) -> impl Content<TuiOut> {
ClipSelected::play_phrase(self)
}
pub fn next_status (&self) -> impl Content<TuiOut> {
ClipSelected::next_phrase(self)
}
}
impl std::fmt::Debug for MidiPlayer {
fn fmt (&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
f.debug_struct("MidiPlayer")
.field("clock", &self.clock)
.field("play_phrase", &self.play_phrase)
.field("next_phrase", &self.next_phrase)
.finish()
}
}
from!(|clock: &Clock| MidiPlayer = Self {
clock: clock.clone(),
midi_ins: vec![],
midi_outs: vec![],
note_buf: vec![0;8],
reset: true,
recording: false,
monitoring: false,
overdub: false,
play_phrase: None,
next_phrase: None,
notes_in: RwLock::new([false;128]).into(),
notes_out: RwLock::new([false;128]).into(),
});
from!(|state: (&Clock, &Arc<RwLock<MidiClip>>)|MidiPlayer = {
let (clock, phrase) = state;
let mut model = Self::from(clock);
model.play_phrase = Some((Moment::zero(&clock.timebase), Some(phrase.clone())));
model
});
has_clock!(|self: MidiPlayer|&self.clock);
impl HasMidiIns for MidiPlayer {
fn midi_ins (&self) -> &Vec<Port<MidiIn>> {
&self.midi_ins
}
fn midi_ins_mut (&mut self) -> &mut Vec<Port<MidiIn>> {
&mut self.midi_ins
}
}
impl HasMidiOuts for MidiPlayer {
fn midi_outs (&self) -> &Vec<Port<MidiOut>> {
&self.midi_outs
}
fn midi_outs_mut (&mut self) -> &mut Vec<Port<MidiOut>> {
&mut self.midi_outs
}
fn midi_note (&mut self) -> &mut Vec<u8> {
&mut self.note_buf
}
}
/// Hosts the JACK callback for a single MIDI player
pub struct PlayerAudio<'a, T: MidiPlayerApi>(
/// Player
pub &'a mut T,
/// Note buffer
pub &'a mut Vec<u8>,
/// Note chunk buffer
pub &'a mut Vec<Vec<Vec<u8>>>,
);
/// JACK process callback for a sequencer's phrase player/recorder.
impl<T: MidiPlayerApi> Audio for PlayerAudio<'_, T> {
fn process (&mut self, _: &Client, scope: &ProcessScope) -> Control {
let model = &mut self.0;
let note_buf = &mut self.1;
let midi_buf = &mut self.2;
// Clear output buffer(s)
model.clear(scope, midi_buf, false);
// Write chunk of phrase to output, handle switchover
if model.play(scope, note_buf, midi_buf) {
model.switchover(scope, note_buf, midi_buf);
}
if model.has_midi_ins() {
if model.recording() || model.monitoring() {
// Record and/or monitor input
model.record(scope, midi_buf)
} else if model.has_midi_outs() && model.monitoring() {
// Monitor input to output
model.monitor(scope, midi_buf)
}
}
// Write to output port(s)
model.write(scope, midi_buf);
Control::Continue
}
}
impl MidiRecordApi for MidiPlayer {
fn recording (&self) -> bool {
self.recording
}
fn recording_mut (&mut self) -> &mut bool {
&mut self.recording
}
fn monitoring (&self) -> bool {
self.monitoring
}
fn monitoring_mut (&mut self) -> &mut bool {
&mut self.monitoring
}
fn overdub (&self) -> bool {
self.overdub
}
fn overdub_mut (&mut self) -> &mut bool {
&mut self.overdub
}
fn notes_in (&self) -> &Arc<RwLock<[bool; 128]>> {
&self.notes_in
}
}
impl MidiPlaybackApi for MidiPlayer {
fn notes_out (&self) -> &Arc<RwLock<[bool; 128]>> {
&self.notes_out
}
}
impl HasPlayPhrase for MidiPlayer {
fn reset (&self) -> bool {
self.reset
}
fn reset_mut (&mut self) -> &mut bool {
&mut self.reset
}
fn play_phrase (&self) -> &Option<(Moment, Option<Arc<RwLock<MidiClip>>>)> {
&self.play_phrase
}
fn play_phrase_mut (&mut self) -> &mut Option<(Moment, Option<Arc<RwLock<MidiClip>>>)> {
&mut self.play_phrase
}
fn next_phrase (&self) -> &Option<(Moment, Option<Arc<RwLock<MidiClip>>>)> {
&self.next_phrase
}
fn next_phrase_mut (&mut self) -> &mut Option<(Moment, Option<Arc<RwLock<MidiClip>>>)> {
&mut self.next_phrase
}
}
//#[derive(Debug)]
//pub struct MIDIPlayer {
///// Global timebase
//pub clock: Arc<Clock>,
///// Start time and phrase being played
//pub play_phrase: Option<(Moment, Option<Arc<RwLock<Phrase>>>)>,
///// Start time and next phrase
//pub next_phrase: Option<(Moment, Option<Arc<RwLock<Phrase>>>)>,
///// Play input through output.
//pub monitoring: bool,
///// Write input to sequence.
//pub recording: bool,
///// Overdub input to sequence.
//pub overdub: bool,
///// Send all notes off
//pub reset: bool, // TODO?: after Some(nframes)
///// Record from MIDI ports to current sequence.
//pub midi_inputs: Vec<Port<MidiIn>>,
///// Play from current sequence to MIDI ports
//pub midi_outputs: Vec<Port<MidiOut>>,
///// MIDI output buffer
//pub midi_note: Vec<u8>,
///// MIDI output buffer
//pub midi_chunk: Vec<Vec<Vec<u8>>>,
///// Notes currently held at input
//pub notes_in: Arc<RwLock<[bool; 128]>>,
///// Notes currently held at output
//pub notes_out: Arc<RwLock<[bool; 128]>>,
//}
///// Methods used primarily by the process callback
//impl MIDIPlayer {
//pub fn new (
//jack: &Arc<RwLock<JackConnection>>,
//clock: &Arc<Clock>,
//name: &str
//) -> Usually<Self> {
//let jack = jack.read().unwrap();
//Ok(Self {
//clock: clock.clone(),
//phrase: None,
//next_phrase: None,
//notes_in: Arc::new(RwLock::new([false;128])),
//notes_out: Arc::new(RwLock::new([false;128])),
//monitoring: false,
//recording: false,
//overdub: true,
//reset: true,
//midi_note: Vec::with_capacity(8),
//midi_chunk: vec![Vec::with_capacity(16);16384],
//midi_outputs: vec![
//jack.client().register_port(format!("{name}_out0").as_str(), MidiOut::default())?
//],
//midi_inputs: vec![
//jack.client().register_port(format!("{name}_in0").as_str(), MidiIn::default())?
//],
//})
//}
//}

View file

@ -1,50 +0,0 @@
use crate::*;
#[derive(Debug, Clone)]
pub struct MidiPointModel {
/// Time coordinate of cursor
pub time_point: Arc<AtomicUsize>,
/// Note coordinate of cursor
pub note_point: Arc<AtomicUsize>,
/// Length of note that will be inserted, in pulses
pub note_len: Arc<AtomicUsize>,
}
impl Default for MidiPointModel {
fn default () -> Self {
Self {
time_point: Arc::new(0.into()),
note_point: Arc::new(36.into()),
note_len: Arc::new(24.into()),
}
}
}
pub trait NotePoint {
fn note_len (&self) -> usize;
fn set_note_len (&self, x: usize);
fn note_point (&self) -> usize;
fn set_note_point (&self, x: usize);
fn note_end (&self) -> usize { self.note_point() + self.note_len() }
}
pub trait TimePoint {
fn time_point (&self) -> usize;
fn set_time_point (&self, x: usize);
}
pub trait MidiPoint: NotePoint + TimePoint {}
impl<T: NotePoint + TimePoint> MidiPoint for T {}
impl NotePoint for MidiPointModel {
fn note_len (&self) -> usize { self.note_len.load(Relaxed)}
fn set_note_len (&self, x: usize) { self.note_len.store(x, Relaxed) }
fn note_point (&self) -> usize { self.note_point.load(Relaxed).min(127) }
fn set_note_point (&self, x: usize) { self.note_point.store(x.min(127), Relaxed) }
}
impl TimePoint for MidiPointModel {
fn time_point (&self) -> usize { self.time_point.load(Relaxed) }
fn set_time_point (&self, x: usize) { self.time_point.store(x, Relaxed) }
}

View file

@ -1,93 +0,0 @@
use crate::*;
pub trait HasPhrases {
fn phrases (&self) -> &Vec<Arc<RwLock<MidiClip>>>;
fn phrases_mut (&mut self) -> &mut Vec<Arc<RwLock<MidiClip>>>;
}
#[macro_export] macro_rules! has_phrases {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasPhrases for $Struct $(<$($L),*$($T),*>)? {
fn phrases (&$self) -> &Vec<Arc<RwLock<MidiClip>>> { &$cb }
fn phrases_mut (&mut $self) -> &mut Vec<Arc<RwLock<MidiClip>>> { &mut$cb }
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum PhrasePoolCommand {
Add(usize, MidiClip),
Delete(usize),
Swap(usize, usize),
Import(usize, PathBuf),
Export(usize, PathBuf),
SetName(usize, Arc<str>),
SetLength(usize, usize),
SetColor(usize, ItemColor),
}
impl<T: HasPhrases> Command<T> for PhrasePoolCommand {
fn execute (self, model: &mut T) -> Perhaps<Self> {
use PhrasePoolCommand::*;
Ok(match self {
Add(mut index, phrase) => {
let phrase = Arc::new(RwLock::new(phrase));
let phrases = model.phrases_mut();
if index >= phrases.len() {
index = phrases.len();
phrases.push(phrase)
} else {
phrases.insert(index, phrase);
}
Some(Self::Delete(index))
},
Delete(index) => {
let phrase = model.phrases_mut().remove(index).read().unwrap().clone();
Some(Self::Add(index, phrase))
},
Swap(index, other) => {
model.phrases_mut().swap(index, other);
Some(Self::Swap(index, other))
},
Import(index, path) => {
let bytes = std::fs::read(&path)?;
let smf = Smf::parse(bytes.as_slice())?;
let mut t = 0u32;
let mut events = vec![];
for track in smf.tracks.iter() {
for event in track.iter() {
t += event.delta.as_int();
if let TrackEventKind::Midi { channel, message } = event.kind {
events.push((t, channel.as_int(), message));
}
}
}
let mut phrase = MidiClip::new("imported", true, t as usize + 1, None, None);
for event in events.iter() {
phrase.notes[event.0 as usize].push(event.2);
}
Self::Add(index, phrase).execute(model)?
},
Export(_index, _path) => {
todo!("export phrase to midi file");
},
SetName(index, name) => {
let mut phrase = model.phrases()[index].write().unwrap();
let old_name = phrase.name.clone();
phrase.name = name;
Some(Self::SetName(index, old_name))
},
SetLength(index, length) => {
let mut phrase = model.phrases()[index].write().unwrap();
let old_len = phrase.length;
phrase.length = length;
Some(Self::SetLength(index, old_len))
},
SetColor(index, color) => {
let mut color = ItemPalette::from(color);
std::mem::swap(&mut color, &mut model.phrases()[index].write().unwrap().color);
Some(Self::SetColor(index, color.base))
},
})
}
}

View file

@ -1,64 +0,0 @@
use crate::*;
#[derive(Debug, Clone)]
pub struct MidiRangeModel {
pub time_len: Arc<AtomicUsize>,
/// Length of visible time axis
pub time_axis: Arc<AtomicUsize>,
/// Earliest time displayed
pub time_start: Arc<AtomicUsize>,
/// Time step
pub time_zoom: Arc<AtomicUsize>,
/// Auto rezoom to fit in time axis
pub time_lock: Arc<AtomicBool>,
/// Length of visible note axis
pub note_axis: Arc<AtomicUsize>,
// Lowest note displayed
pub note_lo: Arc<AtomicUsize>,
}
from!(|data:(usize, bool)|MidiRangeModel = Self {
time_len: Arc::new(0.into()),
note_axis: Arc::new(0.into()),
note_lo: Arc::new(0.into()),
time_axis: Arc::new(0.into()),
time_start: Arc::new(0.into()),
time_zoom: Arc::new(data.0.into()),
time_lock: Arc::new(data.1.into()),
});
pub trait TimeRange {
fn time_len (&self) -> &AtomicUsize;
fn time_zoom (&self) -> &AtomicUsize;
fn time_lock (&self) -> &AtomicBool;
fn time_start (&self) -> &AtomicUsize;
fn time_axis (&self) -> &AtomicUsize;
fn time_end (&self) -> usize {
self.time_start().get() + self.time_axis().get() * self.time_zoom().get()
}
}
pub trait NoteRange {
fn note_lo (&self) -> &AtomicUsize;
fn note_axis (&self) -> &AtomicUsize;
fn note_hi (&self) -> usize {
(self.note_lo().get() + self.note_axis().get().saturating_sub(1)).min(127)
}
}
pub trait MidiRange: TimeRange + NoteRange {}
impl<T: TimeRange + NoteRange> MidiRange for T {}
impl TimeRange for MidiRangeModel {
fn time_len (&self) -> &AtomicUsize { &self.time_len }
fn time_zoom (&self) -> &AtomicUsize { &self.time_zoom }
fn time_lock (&self) -> &AtomicBool { &self.time_lock }
fn time_start (&self) -> &AtomicUsize { &self.time_start }
fn time_axis (&self) -> &AtomicUsize { &self.time_axis }
}
impl NoteRange for MidiRangeModel {
fn note_lo (&self) -> &AtomicUsize { &self.note_lo }
fn note_axis (&self) -> &AtomicUsize { &self.note_axis }
}

View file

@ -1,66 +0,0 @@
use crate::*;
pub trait MidiViewer: HasSize<TuiOut> + MidiRange + MidiPoint + Debug + Send + Sync {
fn buffer_size (&self, phrase: &MidiClip) -> (usize, usize);
fn redraw (&self);
fn phrase (&self) -> &Option<Arc<RwLock<MidiClip>>>;
fn phrase_mut (&mut self) -> &mut Option<Arc<RwLock<MidiClip>>>;
fn set_phrase (&mut self, phrase: Option<&Arc<RwLock<MidiClip>>>) {
*self.phrase_mut() = phrase.cloned();
self.redraw();
}
/// Make sure cursor is within note range
fn autoscroll (&self) {
let note_point = self.note_point().min(127);
let note_lo = self.note_lo().get();
let note_hi = self.note_hi();
if note_point < note_lo {
self.note_lo().set(note_point);
} else if note_point > note_hi {
self.note_lo().set((note_lo + note_point).saturating_sub(note_hi));
}
}
/// Make sure time range is within display
fn autozoom (&self) {
if self.time_lock().get() {
let time_len = self.time_len().get();
let time_axis = self.time_axis().get();
let time_zoom = self.time_zoom().get();
loop {
let time_zoom = self.time_zoom().get();
let time_area = time_axis * time_zoom;
if time_area > time_len {
let next_time_zoom = Note::prev(time_zoom);
if next_time_zoom <= 1 {
break
}
let next_time_area = time_axis * next_time_zoom;
if next_time_area >= time_len {
self.time_zoom().set(next_time_zoom);
} else {
break
}
} else if time_area < time_len {
let prev_time_zoom = Note::next(time_zoom);
if prev_time_zoom > 384 {
break
}
let prev_time_area = time_axis * prev_time_zoom;
if prev_time_area <= time_len {
self.time_zoom().set(prev_time_zoom);
} else {
break
}
}
}
if time_zoom != self.time_zoom().get() {
self.redraw()
}
}
//while time_len.div_ceil(time_zoom) > time_axis {
//println!("\r{time_len} {time_zoom} {time_axis}");
//time_zoom = Note::next(time_zoom);
//}
//self.time_zoom().set(time_zoom);
}
}

View file

@ -6,7 +6,7 @@ use MidiEditCommand::*;
use PhrasePoolCommand::*;
/// Root view for standalone `tek_sequencer`.
pub struct Sequencer {
_jack: Arc<RwLock<JackConnection>>,
pub _jack: Arc<RwLock<JackConnection>>,
pub pool: PoolModel,
pub editor: MidiEditor,
@ -23,32 +23,6 @@ pub struct Sequencer {
pub midi_buf: Vec<Vec<Vec<u8>>>,
pub perf: PerfModel,
}
impl Sequencer {
pub fn new (jack: &Arc<RwLock<JackConnection>>) -> Usually<Self> {
let clock = Clock::from(jack);
let phrase = Arc::new(RwLock::new(MidiClip::new(
"Clip", true, 4 * clock.timebase.ppq.get() as usize,
None, Some(ItemColor::random().into())
)));
Ok(Self {
_jack: jack.clone(),
pool: PoolModel::from(&phrase),
editor: MidiEditor::from(&phrase),
player: MidiPlayer::from((&clock, &phrase)),
compact: true,
transport: true,
selectors: true,
size: Measure::new(),
midi_buf: vec![vec![];65536],
note_buf: vec![],
perf: PerfModel::default(),
status: true,
clock,
})
}
}
render!(TuiOut: (self: Sequencer) => self.size.of(
Bsp::s(self.toolbar_view(),
Bsp::n(self.selector_view(),