invoke timebase callback, persists state but doesn't seem to do anything

This commit is contained in:
🪞👃🪞 2024-12-29 00:52:20 +01:00
parent ae69e87dc9
commit 003329aa1b
10 changed files with 350 additions and 329 deletions

View file

@ -45,8 +45,20 @@ impl GrooveboxCli {
jack.connect_audio_to(&app.sampler.audio_outs[1], &self.r_to)?;
if self.sync {
jack.read().unwrap().client().register_timebase_callback(false, |bbt, state, nframes, new_pos|{
println!("\r{state:?} {nframes} {new_pos}");
// TODO
if new_pos {
let ppq = bbt.ticks_per_beat;
let pulse = bbt.bar as f64 * 4. * ppq + bbt.beat as f64 * ppq + bbt.tick as f64;
app.clock().playhead.update_from_pulse(pulse)
} else {
let pulse = app.clock().playhead.pulse.get();
let ppq = app.clock().timebase.ppq.get();
let bpm = app.clock().timebase.bpm.get();
bbt.bar = (pulse / ppq) as usize / 4;
bbt.beat = (pulse / ppq) as usize % 4;
bbt.tick = (pulse % ppq) as usize;
bbt.ticks_per_beat = ppq;
bbt.bpm = bpm;
}
})?
}
Ok(app)

View file

@ -44,6 +44,7 @@ from_jack!(|jack|GrooveboxTui {
status: true,
}
});
has_clock!(|self: GrooveboxTui|self.player.clock());
audio!(|self: GrooveboxTui, client, scope|{
let t0 = self.perf.get_t0();
if Control::Quit == ClockAudio(&mut self.player).process(client, scope) {
@ -90,7 +91,6 @@ audio!(|self: GrooveboxTui, client, scope|{
self.perf.update(t0, scope);
Control::Continue
});
has_clock!(|self:GrooveboxTui|&self.player.clock);
render!(<Tui>|self:GrooveboxTui|{
let w = self.size.w();
let phrase_w = if w > 60 { 20 } else if w > 40 { 15 } else { 10 };

View file

@ -4,6 +4,7 @@
pub mod core; pub use self::core::*;
pub mod time; pub(crate) use self::time::*;
pub use self::time::HasClock;
pub mod space; pub(crate) use self::space::*;

View file

@ -1,9 +1,205 @@
pub(crate) mod clock; pub(crate) use clock::*;
pub(crate) mod moment; pub(crate) use moment::*;
pub(crate) mod perf; pub(crate) use perf::*;
pub(crate) mod pulse; pub(crate) use pulse::*;
pub(crate) mod sr; pub(crate) use sr::*;
pub(crate) mod unit; pub(crate) use unit::*;
use crate::*;
pub mod microsecond; pub(crate) use self::microsecond::*;
pub mod moment; pub(crate) use self::moment::*;
pub mod perf; pub(crate) use self::perf::*;
pub mod pulse; pub(crate) use self::pulse::*;
pub mod sample_count; pub(crate) use self::sample_count::*;
pub mod sample_rate; pub(crate) use self::sample_rate::*;
pub mod timebase; pub(crate) use self::timebase::*;
pub mod unit; pub(crate) use self::unit::*;
pub trait HasClock: Send + Sync {
fn clock (&self) -> &ClockModel;
}
#[macro_export] macro_rules! has_clock {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasClock for $Struct $(<$($L),*$($T),*>)? {
fn clock (&$self) -> &ClockModel { $cb }
}
}
}
/// Hosts the JACK callback for updating the temporal pointer and playback status.
pub struct ClockAudio<'a, T: HasClock>(pub &'a mut T);
impl<T: HasClock> Audio for ClockAudio<'_, T> {
#[inline] fn process (&mut self, _: &Client, scope: &ProcessScope) -> Control {
self.0.clock().update_from_scope(scope).unwrap();
Control::Continue
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum ClockCommand {
Play(Option<u32>),
Pause(Option<u32>),
SeekUsec(f64),
SeekSample(f64),
SeekPulse(f64),
SetBpm(f64),
SetQuant(f64),
SetSync(f64),
}
impl<T: HasClock> Command<T> for ClockCommand {
fn execute (self, state: &mut T) -> Perhaps<Self> {
use ClockCommand::*;
match self {
Play(start) => state.clock().play_from(start)?,
Pause(pause) => state.clock().pause_at(pause)?,
SeekUsec(usec) => state.clock().playhead.update_from_usec(usec),
SeekSample(sample) => state.clock().playhead.update_from_sample(sample),
SeekPulse(pulse) => state.clock().playhead.update_from_pulse(pulse),
SetBpm(bpm) => return Ok(Some(SetBpm(state.clock().timebase().bpm.set(bpm)))),
SetQuant(quant) => return Ok(Some(SetQuant(state.clock().quant.set(quant)))),
SetSync(sync) => return Ok(Some(SetSync(state.clock().sync.set(sync)))),
};
Ok(None)
}
}
#[derive(Clone)]
pub struct ClockModel {
/// JACK transport handle.
pub transport: Arc<Transport>,
/// Global temporal resolution (shared by [Moment] fields)
pub timebase: Arc<Timebase>,
/// Current global sample and usec (monotonic from JACK clock)
pub global: Arc<Moment>,
/// Global sample and usec at which playback started
pub started: Arc<RwLock<Option<Moment>>>,
/// Playback offset (when playing not from start)
pub offset: Arc<Moment>,
/// Current playhead position
pub playhead: Arc<Moment>,
/// Note quantization factor
pub quant: Arc<Quantize>,
/// Launch quantization factor
pub sync: Arc<LaunchSync>,
/// Size of buffer in samples
pub chunk: Arc<AtomicUsize>,
}
from!(|jack: &Arc<RwLock<JackClient>>| ClockModel = {
let jack = jack.read().unwrap();
let chunk = jack.client().buffer_size();
let transport = jack.client().transport();
let timebase = Arc::new(Timebase::default());
Self {
quant: Arc::new(24.into()),
sync: Arc::new(384.into()),
transport: Arc::new(transport),
chunk: Arc::new((chunk as usize).into()),
global: Arc::new(Moment::zero(&timebase)),
playhead: Arc::new(Moment::zero(&timebase)),
offset: Arc::new(Moment::zero(&timebase)),
started: RwLock::new(None).into(),
timebase,
}
});
impl std::fmt::Debug for ClockModel {
fn fmt (&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
f.debug_struct("ClockModel")
.field("timebase", &self.timebase)
.field("chunk", &self.chunk)
.field("quant", &self.quant)
.field("sync", &self.sync)
.field("global", &self.global)
.field("playhead", &self.playhead)
.field("started", &self.started)
.finish()
}
}
impl ClockModel {
pub fn timebase (&self) -> &Arc<Timebase> {
&self.timebase
}
/// Current sample rate
pub fn sr (&self) -> &SampleRate {
&self.timebase.sr
}
/// Current tempo
pub fn bpm (&self) -> &BeatsPerMinute {
&self.timebase.bpm
}
/// Current MIDI resolution
pub fn ppq (&self) -> &PulsesPerQuaver {
&self.timebase.ppq
}
/// Next pulse that matches launch sync (for phrase switchover)
pub fn next_launch_pulse (&self) -> usize {
let sync = self.sync.get() as usize;
let pulse = self.playhead.pulse.get() as usize;
if pulse % sync == 0 {
pulse
} else {
(pulse / sync + 1) * sync
}
}
/// Start playing, optionally seeking to a given location beforehand
pub fn play_from (&self, start: Option<u32>) -> Usually<()> {
if let Some(start) = start {
self.transport.locate(start)?;
}
self.transport.start()?;
Ok(())
}
/// Pause, optionally seeking to a given location afterwards
pub fn pause_at (&self, pause: Option<u32>) -> Usually<()> {
self.transport.stop()?;
if let Some(pause) = pause {
self.transport.locate(pause)?;
}
Ok(())
}
/// Is currently paused?
pub fn is_stopped (&self) -> bool {
self.started.read().unwrap().is_none()
}
/// Is currently playing?
pub fn is_rolling (&self) -> bool {
self.started.read().unwrap().is_some()
}
/// Update chunk size
pub fn set_chunk (&self, n_frames: usize) {
self.chunk.store(n_frames, Relaxed);
}
pub fn update_from_scope (&self, scope: &ProcessScope) -> Usually<()> {
// Store buffer length
self.set_chunk(scope.n_frames() as usize);
// Store reported global frame and usec
let CycleTimes { current_frames, current_usecs, .. } = scope.cycle_times()?;
self.global.sample.set(current_frames as f64);
self.global.usec.set(current_usecs as f64);
// If transport has just started or just stopped,
// update starting point:
let mut started = self.started.write().unwrap();
match (self.transport.query_state()?, started.as_ref()) {
(TransportState::Rolling, None) => {
let moment = Moment::zero(&self.timebase);
moment.sample.set(current_frames as f64);
moment.usec.set(current_usecs as f64);
*started = Some(moment);
},
(TransportState::Stopped, Some(_)) => {
*started = None;
},
_ => {}
};
self.playhead.update_from_sample(started.as_ref()
.map(|started|current_frames as f64 - started.sample.get())
.unwrap_or(0.));
Ok(())
}
}
//#[cfg(test)]
//mod test {

View file

@ -1,193 +0,0 @@
use crate::*;
pub trait HasClock: Send + Sync {
fn clock (&self) -> &ClockModel;
}
#[macro_export] macro_rules! has_clock {
(|$self:ident:$Struct:ident$(<$($L:lifetime),*$($T:ident$(:$U:path)?),*>)?|$cb:expr) => {
impl $(<$($L),*$($T $(: $U)?),*>)? HasClock for $Struct $(<$($L),*$($T),*>)? {
fn clock (&$self) -> &ClockModel { $cb }
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum ClockCommand {
Play(Option<u32>),
Pause(Option<u32>),
SeekUsec(f64),
SeekSample(f64),
SeekPulse(f64),
SetBpm(f64),
SetQuant(f64),
SetSync(f64),
}
impl<T: HasClock> Command<T> for ClockCommand {
fn execute (self, state: &mut T) -> Perhaps<Self> {
use ClockCommand::*;
match self {
Play(start) => state.clock().play_from(start)?,
Pause(pause) => state.clock().pause_at(pause)?,
SeekUsec(usec) => state.clock().playhead.update_from_usec(usec),
SeekSample(sample) => state.clock().playhead.update_from_sample(sample),
SeekPulse(pulse) => state.clock().playhead.update_from_pulse(pulse),
SetBpm(bpm) => return Ok(Some(SetBpm(state.clock().timebase().bpm.set(bpm)))),
SetQuant(quant) => return Ok(Some(SetQuant(state.clock().quant.set(quant)))),
SetSync(sync) => return Ok(Some(SetSync(state.clock().sync.set(sync)))),
};
Ok(None)
}
}
#[derive(Clone)]
pub struct ClockModel {
/// JACK transport handle.
pub transport: Arc<Transport>,
/// Global temporal resolution (shared by [Moment] fields)
pub timebase: Arc<Timebase>,
/// Current global sample and usec (monotonic from JACK clock)
pub global: Arc<Moment>,
/// Global sample and usec at which playback started
pub started: Arc<RwLock<Option<Moment>>>,
/// Playback offset (when playing not from start)
pub offset: Arc<Moment>,
/// Current playhead position
pub playhead: Arc<Moment>,
/// Note quantization factor
pub quant: Arc<Quantize>,
/// Launch quantization factor
pub sync: Arc<LaunchSync>,
/// Size of buffer in samples
pub chunk: Arc<AtomicUsize>,
}
from!(|jack: &Arc<RwLock<JackClient>>| ClockModel = {
let jack = jack.read().unwrap();
let chunk = jack.client().buffer_size();
let transport = jack.client().transport();
let timebase = Arc::new(Timebase::default());
Self {
quant: Arc::new(24.into()),
sync: Arc::new(384.into()),
transport: Arc::new(transport),
chunk: Arc::new((chunk as usize).into()),
global: Arc::new(Moment::zero(&timebase)),
playhead: Arc::new(Moment::zero(&timebase)),
offset: Arc::new(Moment::zero(&timebase)),
started: RwLock::new(None).into(),
timebase,
}
});
impl std::fmt::Debug for ClockModel {
fn fmt (&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
f.debug_struct("ClockModel")
.field("timebase", &self.timebase)
.field("chunk", &self.chunk)
.field("quant", &self.quant)
.field("sync", &self.sync)
.field("global", &self.global)
.field("playhead", &self.playhead)
.field("started", &self.started)
.finish()
}
}
impl ClockModel {
pub fn timebase (&self) -> &Arc<Timebase> {
&self.timebase
}
/// Current sample rate
pub fn sr (&self) -> &SampleRate {
&self.timebase.sr
}
/// Current tempo
pub fn bpm (&self) -> &BeatsPerMinute {
&self.timebase.bpm
}
/// Current MIDI resolution
pub fn ppq (&self) -> &PulsesPerQuaver {
&self.timebase.ppq
}
/// Next pulse that matches launch sync (for phrase switchover)
pub fn next_launch_pulse (&self) -> usize {
let sync = self.sync.get() as usize;
let pulse = self.playhead.pulse.get() as usize;
if pulse % sync == 0 {
pulse
} else {
(pulse / sync + 1) * sync
}
}
/// Start playing, optionally seeking to a given location beforehand
pub fn play_from (&self, start: Option<u32>) -> Usually<()> {
if let Some(start) = start {
self.transport.locate(start)?;
}
self.transport.start()?;
Ok(())
}
/// Pause, optionally seeking to a given location afterwards
pub fn pause_at (&self, pause: Option<u32>) -> Usually<()> {
self.transport.stop()?;
if let Some(pause) = pause {
self.transport.locate(pause)?;
}
Ok(())
}
/// Is currently paused?
pub fn is_stopped (&self) -> bool {
self.started.read().unwrap().is_none()
}
/// Is currently playing?
pub fn is_rolling (&self) -> bool {
self.started.read().unwrap().is_some()
}
/// Update chunk size
pub fn set_chunk (&self, n_frames: usize) {
self.chunk.store(n_frames, Relaxed);
}
pub fn update_from_scope (&self, scope: &ProcessScope) -> Usually<()> {
// Store buffer length
self.set_chunk(scope.n_frames() as usize);
// Store reported global frame and usec
let CycleTimes { current_frames, current_usecs, .. } = scope.cycle_times()?;
self.global.sample.set(current_frames as f64);
self.global.usec.set(current_usecs as f64);
// If transport has just started or just stopped,
// update starting point:
let mut started = self.started.write().unwrap();
match (self.transport.query_state()?, started.as_ref()) {
(TransportState::Rolling, None) => {
let moment = Moment::zero(&self.timebase);
moment.sample.set(current_frames as f64);
moment.usec.set(current_usecs as f64);
*started = Some(moment);
},
(TransportState::Stopped, Some(_)) => {
*started = None;
},
_ => {}
};
self.playhead.update_from_sample(started.as_ref()
.map(|started|current_frames as f64 - started.sample.get())
.unwrap_or(0.));
Ok(())
}
}
/// Hosts the JACK callback for updating the temporal pointer and playback status.
pub struct ClockAudio<'a, T: HasClock>(pub &'a mut T);
impl<T: HasClock> Audio for ClockAudio<'_, T> {
#[inline] fn process (&mut self, _: &Client, scope: &ProcessScope) -> Control {
self.0.clock().update_from_scope(scope).unwrap();
Control::Continue
}
}

15
src/time/microsecond.rs Normal file
View file

@ -0,0 +1,15 @@
use crate::*;
/// Timestamp in microseconds
#[derive(Debug, Default)] pub struct Microsecond(AtomicF64);
impl_time_unit!(Microsecond);
impl Microsecond {
#[inline] pub fn format_msu (&self) -> String {
let usecs = self.get() as usize;
let (seconds, msecs) = (usecs / 1000000, usecs / 1000 % 1000);
let (minutes, seconds) = (seconds / 60, seconds % 60);
format!("{minutes}:{seconds:02}:{msecs:03}")
}
}

View file

@ -68,114 +68,3 @@ impl Moment {
self.timebase.format_beats_1(self.pulse.get())
}
}
/// Temporal resolutions: sample rate, tempo, MIDI pulses per quaver (beat)
#[derive(Debug, Clone)]
pub struct Timebase {
/// Audio samples per second
pub sr: SampleRate,
/// MIDI beats per minute
pub bpm: BeatsPerMinute,
/// MIDI ticks per beat
pub ppq: PulsesPerQuaver,
}
impl Timebase {
/// Specify sample rate, BPM and PPQ
pub fn new (
s: impl Into<SampleRate>,
b: impl Into<BeatsPerMinute>,
p: impl Into<PulsesPerQuaver>
) -> Self {
Self { sr: s.into(), bpm: b.into(), ppq: p.into() }
}
/// Iterate over ticks between start and end.
#[inline] pub fn pulses_between_samples (&self, start: usize, end: usize) -> TicksIterator {
TicksIterator { spp: self.samples_per_pulse(), sample: start, start, end }
}
/// Return the duration fo a beat in microseconds
#[inline] pub fn usec_per_beat (&self) -> f64 { 60_000_000f64 / self.bpm.get() }
/// Return the number of beats in a second
#[inline] pub fn beat_per_second (&self) -> f64 { self.bpm.get() / 60f64 }
/// Return the number of microseconds corresponding to a note of the given duration
#[inline] pub fn note_to_usec (&self, (num, den): (f64, f64)) -> f64 {
4.0 * self.usec_per_beat() * num / den
}
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn pulse_per_usec (&self) -> f64 { self.ppq.get() / self.usec_per_beat() }
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn usec_per_pulse (&self) -> f64 { self.usec_per_beat() / self.ppq.get() }
/// Return number of pulses to which a number of microseconds corresponds (BPM-dependent)
#[inline] pub fn usecs_to_pulse (&self, usec: f64) -> f64 { usec * self.pulse_per_usec() }
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_usec (&self, pulse: f64) -> f64 { pulse / self.usec_per_pulse() }
/// Return number of pulses in a second (BPM-dependent)
#[inline] pub fn pulses_per_second (&self) -> f64 { self.beat_per_second() * self.ppq.get() }
/// Return fraction of a pulse to which a sample corresponds (SR- and BPM-dependent)
#[inline] pub fn pulses_per_sample (&self) -> f64 {
self.usec_per_pulse() / self.sr.usec_per_sample()
}
/// Return number of samples in a pulse (SR- and BPM-dependent)
#[inline] pub fn samples_per_pulse (&self) -> f64 {
self.sr.get() / self.pulses_per_second()
}
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_sample (&self, p: f64) -> f64 {
self.pulses_per_sample() * p
}
/// Convert a number of samples to a pulse number (SR- and BPM-dependent)
#[inline] pub fn samples_to_pulse (&self, s: f64) -> f64 {
s / self.pulses_per_sample()
}
/// Return the number of samples corresponding to a note of the given duration
#[inline] pub fn note_to_samples (&self, note: (f64, f64)) -> f64 {
self.usec_to_sample(self.note_to_usec(note))
}
/// Return the number of samples corresponding to the given number of microseconds
#[inline] pub fn usec_to_sample (&self, usec: f64) -> f64 {
usec * self.sr.get() / 1000f64
}
/// Return the quantized position of a moment in time given a step
#[inline] pub fn quantize (&self, step: (f64, f64), time: f64) -> (f64, f64) {
let step = self.note_to_usec(step);
(time / step, time % step)
}
/// Quantize a collection of events
#[inline] pub fn quantize_into <E: Iterator<Item=(f64, f64)> + Sized, T> (
&self, step: (f64, f64), events: E
) -> Vec<(f64, f64)> {
events.map(|(time, event)|(self.quantize(step, time).0, event)).collect()
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 0
#[inline] pub fn format_beats_0 (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4, beats % 4)
}
/// Format a number of pulses into Beat.Bar starting from 0
#[inline] pub fn format_beats_0_short (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4, beats % 4)
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1 (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4 + 1, beats % 4 + 1)
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1_short (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4 + 1, beats % 4 + 1)
}
}
impl Default for Timebase {
fn default () -> Self { Self::new(48000f64, 150f64, DEFAULT_PPQ) }
}

5
src/time/sample_count.rs Normal file
View file

@ -0,0 +1,5 @@
use crate::*;
/// Timestamp in audio samples
#[derive(Debug, Default)] pub struct SampleCount(AtomicF64);
impl_time_unit!(SampleCount);

View file

@ -1,17 +1,5 @@
use crate::*;
/// Timestamp in microseconds
#[derive(Debug, Default)] pub struct Microsecond(AtomicF64);
impl_time_unit!(Microsecond);
impl Microsecond {
#[inline] pub fn format_msu (&self) -> String {
let usecs = self.get() as usize;
let (seconds, msecs) = (usecs / 1000000, usecs / 1000 % 1000);
let (minutes, seconds) = (seconds / 60, seconds % 60);
format!("{minutes}:{seconds:02}:{msecs:03}")
}
}
/// Audio sample rate in Hz (samples per second)
#[derive(Debug, Default)] pub struct SampleRate(AtomicF64);
impl_time_unit!(SampleRate);
@ -33,7 +21,3 @@ impl SampleRate {
self.sample_per_usec() * usecs
}
}
/// Timestamp in audio samples
#[derive(Debug, Default)] pub struct SampleCount(AtomicF64);
impl_time_unit!(SampleCount);

112
src/time/timebase.rs Normal file
View file

@ -0,0 +1,112 @@
use crate::*;
/// Temporal resolutions: sample rate, tempo, MIDI pulses per quaver (beat)
#[derive(Debug, Clone)]
pub struct Timebase {
/// Audio samples per second
pub sr: SampleRate,
/// MIDI beats per minute
pub bpm: BeatsPerMinute,
/// MIDI ticks per beat
pub ppq: PulsesPerQuaver,
}
impl Timebase {
/// Specify sample rate, BPM and PPQ
pub fn new (
s: impl Into<SampleRate>,
b: impl Into<BeatsPerMinute>,
p: impl Into<PulsesPerQuaver>
) -> Self {
Self { sr: s.into(), bpm: b.into(), ppq: p.into() }
}
/// Iterate over ticks between start and end.
#[inline] pub fn pulses_between_samples (&self, start: usize, end: usize) -> TicksIterator {
TicksIterator { spp: self.samples_per_pulse(), sample: start, start, end }
}
/// Return the duration fo a beat in microseconds
#[inline] pub fn usec_per_beat (&self) -> f64 { 60_000_000f64 / self.bpm.get() }
/// Return the number of beats in a second
#[inline] pub fn beat_per_second (&self) -> f64 { self.bpm.get() / 60f64 }
/// Return the number of microseconds corresponding to a note of the given duration
#[inline] pub fn note_to_usec (&self, (num, den): (f64, f64)) -> f64 {
4.0 * self.usec_per_beat() * num / den
}
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn pulse_per_usec (&self) -> f64 { self.ppq.get() / self.usec_per_beat() }
/// Return duration of a pulse in microseconds (BPM-dependent)
#[inline] pub fn usec_per_pulse (&self) -> f64 { self.usec_per_beat() / self.ppq.get() }
/// Return number of pulses to which a number of microseconds corresponds (BPM-dependent)
#[inline] pub fn usecs_to_pulse (&self, usec: f64) -> f64 { usec * self.pulse_per_usec() }
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_usec (&self, pulse: f64) -> f64 { pulse / self.usec_per_pulse() }
/// Return number of pulses in a second (BPM-dependent)
#[inline] pub fn pulses_per_second (&self) -> f64 { self.beat_per_second() * self.ppq.get() }
/// Return fraction of a pulse to which a sample corresponds (SR- and BPM-dependent)
#[inline] pub fn pulses_per_sample (&self) -> f64 {
self.usec_per_pulse() / self.sr.usec_per_sample()
}
/// Return number of samples in a pulse (SR- and BPM-dependent)
#[inline] pub fn samples_per_pulse (&self) -> f64 {
self.sr.get() / self.pulses_per_second()
}
/// Convert a number of pulses to a sample number (SR- and BPM-dependent)
#[inline] pub fn pulses_to_sample (&self, p: f64) -> f64 {
self.pulses_per_sample() * p
}
/// Convert a number of samples to a pulse number (SR- and BPM-dependent)
#[inline] pub fn samples_to_pulse (&self, s: f64) -> f64 {
s / self.pulses_per_sample()
}
/// Return the number of samples corresponding to a note of the given duration
#[inline] pub fn note_to_samples (&self, note: (f64, f64)) -> f64 {
self.usec_to_sample(self.note_to_usec(note))
}
/// Return the number of samples corresponding to the given number of microseconds
#[inline] pub fn usec_to_sample (&self, usec: f64) -> f64 {
usec * self.sr.get() / 1000f64
}
/// Return the quantized position of a moment in time given a step
#[inline] pub fn quantize (&self, step: (f64, f64), time: f64) -> (f64, f64) {
let step = self.note_to_usec(step);
(time / step, time % step)
}
/// Quantize a collection of events
#[inline] pub fn quantize_into <E: Iterator<Item=(f64, f64)> + Sized, T> (
&self, step: (f64, f64), events: E
) -> Vec<(f64, f64)> {
events.map(|(time, event)|(self.quantize(step, time).0, event)).collect()
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 0
#[inline] pub fn format_beats_0 (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4, beats % 4)
}
/// Format a number of pulses into Beat.Bar starting from 0
#[inline] pub fn format_beats_0_short (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4, beats % 4)
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1 (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let (beats, pulses) = if ppq > 0 { (pulse / ppq, pulse % ppq) } else { (0, 0) };
format!("{}.{}.{pulses:02}", beats / 4 + 1, beats % 4 + 1)
}
/// Format a number of pulses into Beat.Bar.Pulse starting from 1
#[inline] pub fn format_beats_1_short (&self, pulse: f64) -> String {
let pulse = pulse as usize;
let ppq = self.ppq.get() as usize;
let beats = if ppq > 0 { pulse / ppq } else { 0 };
format!("{}.{}", beats / 4 + 1, beats % 4 + 1)
}
}
impl Default for Timebase {
fn default () -> Self { Self::new(48000f64, 150f64, DEFAULT_PPQ) }
}